Background/aims: Idiopathic central precocious puberty (ICPP) is the premature activation of the hypothalamic-pituitary-gonadal axis in the absence of organic disease. Up to now, just gain-of-function mutations of KISS1/KISS1R and loss-of-function mutations of the maternally imprinted gene MKRN3 are the known genetic causes of ICPP. Our intention is to evaluate variants present in genes related to the pubertal onset pathway that could act as disease-causing or predisposing variants.
Methods: We studied the clinical exome of 20 patients diagnosed with ICPP using the Illumina platform. The bioinformatics analysis was performed using 2 different programs, and the variants were filtered according to a list of genes related to the gonadotropin-releasing hormone pathway.
Results: In a "sporadic case," we found a missense variant in MKRN3 NM_005664.3: c.203G>A, causing the protein change NP_005655.1:p.Arg68His, predicted as pathogenic by 2 informatics tools. The proband carrying this variant was diagnosed with ICPP at 7.75 years of age. We did not find any pathogenic variants in KISS1, KISS1R, LIN28, GNRH, GNRHR, TACR3, and TAC3.
Conclusion: MKRN3 is the most frequent genetic cause of familial ICPP, so it is wise to screen for MKRN3 mutations in all patients with familial ICPP and in patients with an unclear paternal pubertal history.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000453262 | DOI Listing |
Hum Mol Genet
January 2025
Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
Background: Individuals with cystic fibrosis (CF; a recessive disorder) have an increased risk of colorectal cancer (CRC). Evidence suggests individuals with a single CFTR variant may also have increased CRC risk.
Methods: Using population-based studies (GECCO, CORECT, CCFR, and ARIC; 53 785 CRC cases and 58 010 controls), we tested for an association between the most common CFTR variant (Phe508del) and CRC risk.
Nat Med
January 2025
Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.
View Article and Find Full Text PDFOncogene
January 2025
Early Cancer Institute, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK.
Clear cell renal cell carcinoma (ccRCC) is characterised by significant genetic heterogeneity, which has diagnostic and prognostic implications. Very limited evidence is available regarding DNA methylation heterogeneity. We therefore generate sequence level DNA methylation data on 136 multi-region tumour and normal kidney tissue from 18 ccRCC patients, along with matched whole exome sequencing (85 samples) and gene expression (47 samples) data on a subset of samples.
View Article and Find Full Text PDFClin Oral Implants Res
January 2025
Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Objectives: WNT10A mutations are associated with tooth agenesis. This study aimed to assess the clinical outcomes of dental implants in patients carrying WNT10A mutations with different molecular statuses and phenotypes over a long-term follow-up period.
Materials And Methods: Patients with tooth agenesis were screened by whole-exome sequencing (WES) from January 2010 to September 2023.
J Med Genet
January 2025
Department of Pediatrics, NHO Beppu Medical Center, Beppu, Oita, Japan
Introduction: Genotype-phenotype correlations in -related neurodevelopmental disorders (-NDDs) remain unclear. This systematic review aimed to clarify these correlations.
Methods: Searches of PubMed and Embase were conducted on 8 August 2024 to identify studies that had investigated genetically diagnosed NDDs (5q31.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!