Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: We aimed to investigate the effects of chronic oral treatment with centrally acting antihypertensive drugs, such as clonidine (CLO), an α-adrenoceptor agonist, or LNP599, a selective I imidazoline receptor agonist, on brain microvascular function in rats with high-fat diet (HFD)-induced metabolic syndrome.
Methods: Male Wistar Kyoto rats were maintained on a normal diet (CON) or a HFD for 20 weeks. After this period, the HFD group received oral CLO (0.1 mg/kg), LNP599 (20 mg/kg), or vehicle daily for 4 weeks. Systolic blood pressure and heart rate (HR) were evaluated by photoplethysmography. Functional capillary density, endothelial function, and endothelial-leukocyte interactions in the brain were investigated by intravital video microscopy. Cerebral microcirculatory flow was evaluated by laser speckle contrast imaging. Brain tissue endothelial nitric oxide synthase, oxidative enzyme, and inflammatory marker expression levels were analyzed.
Results: Metabolic syndrome decreased brain functional capillary density and microvascular blood perfusion, changes accompanied by deficient brain microcirculation vasodilatory responses to acetylcholine. Significant numbers of rolling and adherent leukocytes were also observed in the brain venules. Chronic sympathetic inhibition with clonidine and LNP599 reduced blood pressure and HR. These effects were accompanied by reversals of cerebral capillary rarefaction, improvements in cerebral microvascular blood flow and endothelial function, and decreases in endothelial-leukocyte interactions in the cerebral venules.
Conclusions: Our results suggest that central sympathetic inhibition exerts beneficial effects by increasing perfusion and reducing inflammatory marker expression and oxidative stress in the brains of rats with metabolic syndrome. Centrally acting antihypertensive drugs may be helpful in regulating cerebral microcirculatory function and vascular inflammation in metabolic syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/met.2016.0085 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!