Skeletal uptake of radiolabeled-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetramethylene phosphoric acid (e.g., 177Lu-DOTMP) complex, is used for bone pain palliation. The moderate energy of β-emitting 177Lu (T½ = 6.7 d, Eβmax = 497keV) has been considered as a potential radionuclide for development of the bone-seeking radiopharmaceutical. Since the specific activity of the radiolabeled carrier molecules should be high, the "no-carrier-added radionuclides" have sig-nificant roles in nuclear medicine. Many researchers illustrated no-carrier-added 177Lu production; among these separation techniques such as ion exchange chromatography, reversed phase ion-pair, and electrochemical method, extraction chromatography has been considered more capable than other methods. In order to optimize the conditions, some effective factors on separation of Lu/Yb were investigated by EXC. The NCA 177Lu, produced by this method, was mixed with 300 μl of DOTMP solution (20 mg in 1 mL of 0.5 M NaHCO3, pH = 8) and incu-bated under stirring at room temperature for 45 min. Radiochemical purity of the 177Lu-DOTMP complex was determined using radio-thin-layer chromatography (RTLC) method. The complex was injected to wild-type rats and biodistribution was then studied for seven days. The NCA 177Lu was produced with specific activ-ity of 48 Ci/mg and with a radinuclidic purity of 99.99% through irradiation of enriched 176Yb target (1 mg) in a thermal neutron flux of 4 × 1013 n.cm-2.s-1 for 14 days. 177Lu-DOTMP was obtained with high radiochemical purities (> 98%) under optimized reaction conditions. The radiolabeled complex exhibited excellent stability at room temperature. Biodistribution of the radiolabeled complex studies in rats showed favorable selective skeletal uptake with rapid clearance from blood along with insignificant accumulation within the other nontargeted organs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690526 | PMC |
http://dx.doi.org/10.1120/jacmp.v17i6.6375 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!