Electrical cell-substrate impedance sensing is increasingly being used for label-free and real-time monitoring of changes in cell morphology and number during cell growth, drug screening, and differentiation. In this study, we evaluated the feasibility of using ECIS to monitor C2C12 myoblast differentiation using a fabricated indium tin oxide (ITO) electrode-based chip. C2C12 myoblast differentiation on the ITO electrode was validated based on decreases in the mRNA level of MyoD and increases in the mRNA levels of myogenin and myosin heavy chain (MHC). Additionally, MHC expression and morphological changes in myoblasts differentiated on the ITO electrode were comparable to those in cells in the control culture dish. From the monitoring the integration of the resistance change at 21.5 kHz, the cell differentiation was label-free and real-time detectable in 30 h of differentiation ( < 0.05).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191049 | PMC |
http://dx.doi.org/10.3390/s16122068 | DOI Listing |
J Ginseng Res
January 2025
KM Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea.
Background: A decline in muscle mass and function can impact the health, disease vulnerability, and mortality of older adults. Prolonged use of high doses of glucocorticoids, such as dexamethasone (DEX), can cause muscle wasting and reduced strength. Ginsenoside Rc (gRc) has been shown to protect muscles by activating the PGC-1α pathway and improving mitochondrial function.
View Article and Find Full Text PDFBurns Trauma
January 2025
Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai 200233, China.
Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Center for Non-Infectious Diseases and Environmental Health Sciences, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
Recently, toxicological and epidemiological research has provided strong support for the unfavorable effects of bisphenol-A (BPA, 2,2'-bis(4-hydroxyphenyl) propane) on myogenesis and its underlying mechanisms. Researchers have therefore been looking for new strategies to prevent or mitigate these injurious effects of BPA on the human body. It has been found that plant extracts may act as potential therapeutic agents or functional foods, preventing human diseases caused by BPA.
View Article and Find Full Text PDFBiology (Basel)
January 2025
NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
Puerarin, a flavonoid compound present in the roots of radix , contributes to the development of tissues such as bone and nerve, but its role in skeletal muscle regeneration remains unclear. In this study, we employed C2C12 myoblasts and barium chloride (BaCl)-based muscle injury models to investigate the effects of puerarin on myogenesis. Our study showed that puerarin stimulated the migration and differentiation of myoblasts in vitro.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea.
An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains largely unknown. This study investigated the functional significance of CNN3 in myogenic differentiation, along with its effects on actin remodeling and mechanosensitive signaling in C2C12 myoblasts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!