Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a CoFeTaBO magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm V s. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155142 | PMC |
http://dx.doi.org/10.1038/ncomms13497 | DOI Listing |
Nat Nanotechnol
January 2025
Max Planck Institute for Microstructure Physics, Halle (Saale), Germany.
Magnetic random-access memory that uses magnetic tunnel junction memory cells is a high-performance, non-volatile memory technology that goes beyond traditional charge-based memories. Today, its speed is limited by the high magnetization of the memory storage layer. Here we prepare magnetic tunnel junction memory devices with a low magnetization ferrimagnetic Heusler alloy MnGe as the memory storage layer on technologically relevant amorphous substrates using a combination of a nitride seed layer and a chemical templating layer.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, 2500, Australia.
Recently, the emergence of two-dimensional (2D) multiferroic materials has opened a new perspective for exploring topological states. However, instances of tuning topological phase transitions through ferroelectric (FE) polarization in 2D ferromagnetic (FM) materials are relatively rare. Here, we found that 11 single layer (SL) materials, named the MMGeX family, possess both FE and FM properties.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, 130024, P. R. China.
A novel dual-mode detection method for microRNA-21 was developed. Photoluminescent (PL) and multiphonon resonant Raman scattering (MRRS) techniques were combined by using ZnTe nanoparticles as signal probes for reliable detection. The catalytic hairpin assembly (CHA) strategy was integrated with superparamagnetic FeO nanoparticle clusters (NCs) to enhance sensitivity.
View Article and Find Full Text PDFSci Rep
January 2025
Water Management Research Institute, National Water Research Center, Shubra El-Kheima 13411, Cairo, Egypt.
The exploration of perovskite compounds incorporating actinide and divalent elements reveals remarkable characteristics. Focusing on PbBkO, RaBkO, and SrBkO, these materials were studied using density functional theory (DFT) via the CASTEP code to analyze their electronic, optical, and mechanical properties. The results show semiconductor behavior, with respective band gaps of 1.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Nanjing University, Hankou Road 22, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, CHINA.
Driven by the miniaturization of microelectronic devices and their multifunctionalities, the development of new quadruple-perovskite oxides with high dielectric constants and high Curie temperature are highly required. Herein, we report on the structural, dielectric and magnetic properties of Sb/Cr-doped CaCu3Ti4O12 (CCTO) quadruple perovskite oxides, CaCu3Ti3.9Sb0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!