Abnormal cytoplasmic mislocalization of transactive response DNA binding protein 43 (TARDBP or TDP-43) in degenerating neurons is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Our previous work suggested that nuclear factor kappa B (NF-κB) may constitute a therapeutic target for TDP-43-mediated disease. Here, we investigated the effects of root extract of Withania somnifera (Ashwagandha), an herbal medicine with anti-inflammatory properties, in transgenic mice expressing a genomic fragment encoding human TDP-43 mutant. Ashwagandha extract was administered orally to hTDP-43 mice for a period of 8 weeks starting at 64 and 48 weeks of age for males and females, respectively. The treatment of hTDP-43 mice ameliorated their motor performance on rotarod test and cognitive function assessed by the passive avoidance test. Microscopy examination of tissue samples revealed that Ashwagandha treatment of hTDP-43 mice improved innervation at neuromuscular junctions, attenuated neuroinflammation, and reduced NF-κB activation. Remarkably, Ashwagandha treatment reversed the cytoplasmic mislocalization of hTDP-43 in spinal motor neurons and in brain cortical neurons of hTDP-43 mice and it reduced hTDP-43 aggregation. In vitro evidence is presented that the neuronal rescue of TDP-43 mislocalization may be due to the indirect effect of factors released from microglial cells exposed to Ashwagandha. These results suggest that Ashwagandha and its constituents might represent promising therapeutics for TDP-43 proteinopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398980 | PMC |
http://dx.doi.org/10.1007/s13311-016-0499-2 | DOI Listing |
Acta Neuropathol Commun
December 2024
Department of Neurosciences, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0624, USA.
Hyperphosphorylated TDP-43 aggregates in the cytoplasm of motor neurons is a neuropathological signature of amyotrophic lateral sclerosis (ALS). These aggregates have been proposed to possess a toxic disease driving role in ALS pathogenesis and progression, however, the contribution of phosphorylation to TDP-43 aggregation and ALS disease mechanisms remains poorly understood. We've previously shown that CK1δ and CK1ε phosphorylate TDP-43 at disease relevant sites, and that genetic reduction and chemical inhibition could reduce phosphorylated TDP-43 (pTDP-43) levels in cellular models.
View Article and Find Full Text PDFFront Physiol
August 2024
Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Duke University Medical Center, Durham, NC, United States.
Res Sq
March 2024
Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
TDP-43 mislocalization and aggregation are key pathological features of motor neuron diseases (MND) including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, transgenic hTDP-43 WT or ΔNLS-overexpression animal models mainly capture late-stages TDP-43 proteinopathy, and do not provide a complete understanding of early motor neuron-specific pathology during pre-symptomatic phases. We have now addressed this shortcoming by generating a new endogenous knock-in (KI) mouse model using a combination of CRISPR/Cas9 and FLEX Cre-switch strategy for the conditional expression of a mislocalized Tdp-43ΔNLS variant of mouse Tdp-43.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
August 2023
Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Aims: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with complex aetiology. Despite evidence of neuromuscular junction (NMJ) denervation and 'dying-back' pathology in models of SOD1-dependent ALS, evidence in other genetic forms of ALS is limited by a lack of suitable animal models. TDP-43, a key mediator protein in ALS, is overexpressed in neurons in Thy1-hTDP-43 mice.
View Article and Find Full Text PDFNeurobiol Dis
March 2023
Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Research Center, Feinberg School of Medicine, Northwestern University, 675 N St Clair Fl 21 Ste 100, Chicago, IL 60611, USA; Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2205 Tech Dr, Evanston, IL 60208, USA.. Electronic address:
Mitochondrial defects are one of the common underlying causes of neuronal vulnerability in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), and TDP-43 pathology is the most commonly observed proteinopathy. Disrupted inner mitochondrial membrane (IMM) reported in the upper motor neurons (UMNs) of ALS patients with TDP-43 pathology is recapitulated in the UMNs of well-characterized hTDP-43 mouse model of ALS. The construct validity, such as shared and common cellular pathology in mice and human, offers a unique opportunity to test treatment strategies that may translate to patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!