Understanding wear in dual mobility total hip replacement: first generation explant wear patterns.

Int Orthop

Laboratoire de Physiologie de l'Exercice, Faculté de Médecine J. Lisfranc, Université Jean Monnet, 42055, Cedex 2, France.

Published: March 2017

Purpose: Dual mobility was introduced by Pr. G. Bousquet to improve the dislocation risk of total hip arthroplasty (THR). The wear mechanisms of this implant remain to be understood. Could enhanced explant wear analysis explain liner wear behaviour?

Methods: Sixty-six explanted liners were selected. Non-destructive 3D scanning and heat colour treatment allowed reporting wear patterns on both convex and concave sides of the liners.

Results: For many liners, liner convexity wear was found to be homogeneous, and linked to a longer implantation time. A few liners had signs of blocking of the convexity, leading to excessive internal damage. Intra prosthetic dislocations were found to only have internal circular wear without liner penetration.

Conclusion: Heat colour treatment showed its effectiveness for highlighting wear patterns. Optimal convexity mobility seemed to be leading to a longer implantation time, with decreased contact stresses on concavity. The retentive rim should have a distinct wear analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00264-016-3362-5DOI Listing

Publication Analysis

Top Keywords

wear patterns
12
wear
9
dual mobility
8
total hip
8
explant wear
8
wear analysis
8
heat colour
8
colour treatment
8
longer implantation
8
implantation time
8

Similar Publications

In the present in vitro study, we evaluated the adhesion of an injectable platelet-rich fibrin (i-PRF) to laser-textured zirconia surfaces and their resultant friction behavior against bone tissue. Three types of zirconia surfaces were compared regarding the i-PRF coating effects: 1) grit blasted with 250-μm spherical alumina particles and acid etched with 20% hydrofluoric acid (ZLA), 2) laser textured with a random (RD) surface pattern, or 3) laser textured with a designed pattern based on 16 lines and 8 passages (L16N8). The coefficient of friction (COF) of the specimens was assessed on a reciprocating sliding pin-on-plate tribometer at 1-N normal load, 1 Hz, and a 2-mm stroke length.

View Article and Find Full Text PDF

Clinical performance of minimally invasive full-mouth rehabilitation using different materials and techniques for patients with moderate to severe tooth wear: a systematic review and meta-analysis.

Clin Oral Investig

January 2025

Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, Zhejiang, China.

Objective: To evaluate short, mid and long-term clinical outcomes and patients' satisfaction of minimally invasive full-mouth rehabilitation using different materials and techniques for patients with moderate to severe tooth wear. Furthermore, materials were analyzed to identify their influences on clinical results.

Materials And Methods: Search was conducted in PubMed, Cochrane Central Register of Controlled Trial, Embase, Web of science and Scopus until December 19, 2024.

View Article and Find Full Text PDF

Microplastic and microfiber contamination in the Tiber River, Italy: Insights into their presence and chemical differentiation.

Mar Pollut Bull

January 2025

Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; National Laboratory for Water Sciences and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H1113 Budapest, Hungary. Electronic address:

Microplastics (MPs) are an emerging environmental concern, but studies on these contaminants, particularly in river ecosystems, remain scarce. Research has indicated that MPs in the environment are predominantly microfibers (MFs); however, a few studies suggest that the MFs encountered are chiefly of natural origin. In this study, we aimed to improve the understanding of MP/MFs (both plastic and natural), among microparticle (solid particles >10 μm to <5000 μm; mainly of plastic as well as natural origin) loads in the Tiber River, Italy, by analyzing the physicochemical properties of surface water and assessing the abundance and characteristics of MPs-MFs at three sites: Ponte Grillo, Aniene, and Magliana, along a 60 km stretch.

View Article and Find Full Text PDF

Navigating the Interconnected World of Tooth Wear, Bruxism, and Temporomandibular Disorders.

J Contemp Dent Pract

October 2024

Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India; Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Naples, Italy, Phone: +39 3289129558, e-mail:

Ronsivalle V, Russo D, Cicciù M, et al. Navigating the Interconnected World of Tooth Wear, Bruxism, and Temporomandibular Disorders. J Contemp Dent Pract 2024;25(10): 911-913.

View Article and Find Full Text PDF

The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!