Context: Pancreatic α-amylase and α-glucosidase inhibitors serve as important strategies in the management of blood glucose. Even though Syzygium cumini (L.) Skeels (Myrtaceae) (SC) is used extensively to treat diabetes; scientific evidence on antidiabetic effects of SC leaves is scarce.
Objective: SC leaf extract was investigated for α-amylase inhibitory effect and continued with isolation and identification of α-amylase inhibitors.
Materials And Methods: Bioassay-guided fractionation was conducted using in vitro α-amylase inhibitory assay (with 20-1000 μg/mL test material) to isolate the inhibitory compounds from ethyl acetate extract of SC leaves. Structures of the isolated inhibitory compounds were elucidated using H NMR and C NMR spectroscopic analysis and direct TLC and HPLC comparison with authentic samples. Study period was from October 2013 to October 2015.
Results: An active fraction obtained with chromatographic separation of the extract inhibited porcine pancreatic α-amylase with an IC of 39.9 μg/mL. Furthermore, it showed a strong inhibition on α-glucosidase with an IC of 28.2 μg/mL. The active fraction was determined to be a 3:1 mixture of ursolic acid and oleanolic acid. Pure ursolic acid and oleanolic acid showed IC values of 6.7 and 57.4 μg/mL, respectively, against α-amylase and 3.1 and 44.1 μg/mL respectively, against α-glucosidase.
Discussion And Conclusions: The present study revealed strong α-amylase and α-glucosidase inhibitory effects of ursolic acid and oleanolic acid isolated from SC leaves for the first time validating the use of SC leaves in antidiabetic therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130705 | PMC |
http://dx.doi.org/10.1080/13880209.2016.1257031 | DOI Listing |
Toxicon
January 2025
College of Biological Sciences and Technology, YiLi Normal University. Electronic address:
Background: Radiotherapy is essential for the management of esophageal squamous cell carcinoma (ESCC). However, ESCC cells are highly susceptible to developing resistance to radiotherapy, leading to poor prognosis. Ursolic acid (UA) is a herbal monomer, has multiple medicinal benefits like anti-tumor.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
KIPS, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India.
The discovery of novel counteractive pharmaceuticals, which have recently generated much interest, has played a significant role in the development of drugs derived from herbal medicines or botanical sources. Paederia foetida (P. foetida) is one such example of a role in both traditional and traditional medicine.
View Article and Find Full Text PDFSci Rep
January 2025
Section of Botany, Department of Biology, Science Faculty, Ege University, Bornova, İzmir, Turkey.
Despite its important pharmacological bioactivities, betulinic acid is still primarily obtained through extraction from heartwood and bark or synthesized synthetically, with less than 3% efficiency. Our endemic rose species, Rosa pisiformis (Christ.) D.
View Article and Find Full Text PDFMolecules
December 2024
Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China.
A comprehensive phytochemical investigation of the twigs/leaves and flower buds of , a rare deciduous shrub native to China, led to the isolation of 39 structurally diverse compounds. These compounds include 11 iridoid glycosides (- and -), 20 triterpenoids (, , and -), and 8 phenylpropanoids (-). Among these, amabiliosides A () and B () represent previously undescribed bis-iridoid glycosides, while amabiliosides C () and D () feature a unique bis-iridoid-monoterpenoid indole alkaloid scaffold with a tetrahydro--carboline-5-carboxylic acid moiety.
View Article and Find Full Text PDFBioorg Chem
December 2024
Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Ursolic acid (3-hydroxy-urs-12-ene-28-oic acid, UA) is a pentacyclic triterpene present in numerous plants, fruits and herbs and exhibits various pharmacological effects. However, UA has limited clinical applicability since it is classified as BCS class IV molecule, characterized by low solubility, low oral bioavailability and low permeability. In the present study, UA was isolated from the biomass marc of Lavandula angustifolia and was structurally modified by an induction of indole ring at the C-3 position and amide group at the C-17 position with the aim to enhance its pharmacological potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!