Objective: Growth differentiation factor 15 (GDF15) is a cardiovascular biomarker belonging to the transforming growth factor-β superfamily. Increased GDF15 concentrations are associated with insulin resistance, diabetes and obesity. We investigated the physiological effects of meal composition and obesity on the regulation of systemic GDF15 levels.
Design: Lean (n = 8) and obese (n = 8) individuals received a carbohydrate- or fat-rich meal, a 75 g oral glucose load (OGTT) or short-term fasting. OGTTs were performed in severely obese patients (n = 6) pre- and post-bariatric surgery.
Methods: Circulating serum GDF15 concentrations were studied in lean and obese individuals in response to different meals, OGTT or short-term fasting, and in severely obese patients pre- and post-bariatric surgery. Regulation of GDF15 mRNA levels and protein release were evaluated in the human hepatic cell line HepG2.
Results: GDF15 concentrations steadily decrease during short-term fasting in lean and obese individuals. Carbohydrate- and fat-rich meals do not influence GDF15, whereas an OGTT leads to a late increase in GDF15 levels. The positive effect of OGTT on GDF15 levels is also preserved in severely obese patients, pre- and post-bariatric surgery. We further studied the regulation of GDF15 mRNA levels and protein release in HepG2, finding that glucose and insulin independently stimulate both GDF15 transcription and secretion.
Conclusion: In summary, high glucose and insulin peaks upregulate GDF15 transcription and release. The nutrient-induced increase in GDF15 levels depends on rapid glucose and insulin excursions following fast-digesting carbohydrates, but not on the amount of calories taken in.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/EJE-16-0550 | DOI Listing |
Curr Cardiol Rev
January 2025
Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
Cardiovascular-kidney-metabolic (CKM) syndrome is the association between obesity, diabetes, CKD (chronic kidney disease), and cardiovascular disease. GDF-15 mainly acts through the GFRAL (Glial cell line-derived neurotrophic factor Family Receptor Alpha-Like) receptor. GDF-15 and GDFRAL complex act mainly through RET co-receptors, further activating Ras and phosphatidylinositol-3-kinase (PI3K)/Akt pathways through downstream signaling.
View Article and Find Full Text PDFUps J Med Sci
January 2025
Centre for Clinical Research, Uppsala University, Västmanland County Hospital, Västerås, Sweden.
Background: Growth differentiation factor 15 (GDF-15) is a robust prognostic biomarker in patients with cardiovascular (CV) disease, and a better understanding of its clinical determinants is desirable. We aimed to study the associations between GDF-15 levels and in outpatients with peripheral arterial disease (PAD).
Methods: An explorative cross-sectional study (Study of Atherosclerosis in Vastmanland, Västerås, Sweden) included 439 outpatients with carotid or lower extremity PAD.
Cancer Lett
January 2025
Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. Electronic address:
Anorexia is a major cause of cancer cachexia and is induced by growth differentiation factor-15 (GDF15), which activates the rearranged during transfection (RET) protein tyrosine kinase in the hindbrain through GDF family receptor α-like (GFRAL), raising the possibility of targeting RET for cancer cachexia treatment. RET-altered cancer patients treated with RET-selective kinase inhibitors gain weight, however, it is unclear whether this results from tumor regression that improves the overall health of patients. Thus, the potential of using a RET inhibitor to address cancer cachexia remains unknown.
View Article and Find Full Text PDFGrowth Factors
January 2025
Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
In this study, we aim to explore the involvement of growth differentiation factor 15 (GDF15) in both corneal neovascularization (CNV) and retinoblastoma (RB) progression. Cell migration and proliferation were assessed through Scratch assays and CCK-8 assays. Apoptosis was quantified using flow cytometry.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Rome Open University, 00166 Rome, Italy.
: In this study, the effects of an eight-week exercise and nutrition program on blood lipids, glucose, insulin, insulin resistance (HOMA-IR), leptin, ghrelin, irisin, malondialdehyde (MDA), and Growth Differentiation Factor 15 (GDF15) in overweight women were investigated. : A total of 48 women volunteers participated in this study. The participants were randomly divided into four groups: control (C), exercise (E), nutrition (N), exercise + nutrition (E + N).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!