Electron Cooling in a Magnetically Expanding Plasma.

Phys Rev Lett

Electric Propulsion and Plasma Dynamics Laboratory (EPPDyL), Princeton University, Princeton, New Jersey, 08544, USA.

Published: November 2016

Electron cooling in a magnetically expanding plasma, which is a fundamental process for plasma flow and detachment in magnetic nozzles, is experimentally investigated using a radio frequency plasma source and magnetic nozzle (MN). Probe measurements of the plasma density, potential, and electron temperature along the center line of the MN indicate that the expansion follows a polytropic law with exponent γ_{e}=1.15±0.03. This value contradicts isothermal electron expansion, γ_{e}=1, which is commonly assumed in MN models. The axial variation of the measured quantities can be described by a simple quasi-1D fluid model with classical electron thermal conduction, for which it has been previously shown that a value of γ_{e}≈1.19 is expected in the weakly collisional limit. A new criterion, derived from the model, ensures efficient ion acceleration when a critical value for the ratio of convected to conducted power is exceeded.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.225003DOI Listing

Publication Analysis

Top Keywords

electron cooling
8
cooling magnetically
8
magnetically expanding
8
expanding plasma
8
electron
5
plasma
5
plasma electron
4
plasma fundamental
4
fundamental process
4
process plasma
4

Similar Publications

Treating the surfaces of dental implants in an alkaline medium allows us to obtain microstructures of sodium titanate crystals that favor the appearance of apatite in the physiological environment, producing osteoconductive surfaces. In this research, 385 discs made of titanium used in dental implants underwent different NaOH treatments with a 6M concentration at 600 °C and cooling rates of 20, 50, 75, and 115 °C/h. Using high-resolution electron microscopy, the microstructures were observed, and the different crystal sizes were determined and compared with control samples (those without biomimetic treatment).

View Article and Find Full Text PDF

Attaining sub-Kelvin temperatures remains technologically challenging and often relies on the scarce resource He, unless employing adiabatic demagnetization refrigeration. Herein, the active coolant typically consists of weakly coupled paramagnetic ions, whose magnetic interaction strengths are comparable in energy to the relevant temperature regime of cooling. Such interactions depend strongly on inter-ion distances, fundamentally hindering the realization of dense coolants for sub-Kelvin refrigeration.

View Article and Find Full Text PDF

Materials with both high thermoelectric (TE) performance and excellent magnetocaloric (MC) properties near room temperature are of great importance for all-solid-state TE/MC hybrid refrigeration. A combination of such two critical characteristics, however, is hardly attainable in single phase compounds. Herein we report a composite material that comprises Bi-Sb-Te thermoelectric and Ni-Mn-In magnetocaloric components as an innovative thermoelectromagnetic material with dual functionalities.

View Article and Find Full Text PDF

In targeted alpha-particle therapy, actinium-225 (Ac-225) has emerged as a radionuclide of potential, driving extensive efforts to develop innovative radiopharmaceuticals. High-resolution imaging of alpha particles is required for precisely detecting alpha-emitting radionuclides in cellular environments and small organs. Here, we report real-time trajectory imaging of alpha particles emitted by Ac-225 and its daughter radionuclides, utilizing an alpha particle trajectory imaging system.

View Article and Find Full Text PDF

Hot carrier dynamics in the BAPbBr/MoS heterostructure.

Nanoscale

January 2025

Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India.

Herein, we investigated the carrier-phonon relaxation process in a two-dimensional (2D) BAPbBr perovskite and its heterostructure with MoS. Energy transfer was observed in the van der Waals heterostructure of 2D perovskite and monolayer MoS, leading to enhancement in the photoluminescence intensity of MoS. Femtosecond pump-probe spectroscopy was used to study the carrier and lattice dynamics of pristine 2D materials and their heterostructure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!