In this paper, we present a novel adaptive consensus algorithm for a class of nonlinear multiagent systems with time-varying asymmetric state constraints. As such, our contribution is a step forward beyond the usual consensus stabilization result to show that the states of the agents remain within a user defined, time-varying bound. To prove our new results, the original multiagent system is transformed into a new one. Stabilization and consensus of transformed states are sufficient to ensure the consensus of the original networked agents without violating of the predefined asymmetric time-varying state constraints. A single neural network (NN), whose weights are tuned online, is used in our design to approximate the unknown functions in the agent's dynamics. To account for the NN approximation residual, reconstruction error, and external disturbances, a robust term is introduced into the approximating system equation. Additionally in our design, each agent only exchanges the information with its neighbor agents, and thus the proposed consensus algorithm is decentralized. The theoretical results are proved via Lyapunov synthesis. Finally, simulations are performed on a nonlinear multiagent system to illustrate the performance of our consensus design scheme.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2016.2629268DOI Listing

Publication Analysis

Top Keywords

nonlinear multiagent
12
state constraints
12
multiagent systems
8
systems time-varying
8
time-varying state
8
consensus algorithm
8
multiagent system
8
consensus
7
consensus control
4
control nonlinear
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!