Objective: To determine the most reliable predictor of radiofrequency (RF) ablation zone volume among three-dimensional (3D) volumetric colour Doppler vascular indices in an in vitro blood-perfused bovine liver model.
Methods: 3D colour Doppler volume data of the local hepatic parenchyma were acquired from 37 areas of 13 bovine livers connected to an in vitro oxygenated blood perfusion system. Doppler vascular indices of vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were obtained from the volume data using 3D volume analysis software. 37 RF ablations were performed at the same locations where the ultrasound data were obtained from. The relationship of these vascular indices and the ablation zone volumes measured from gross specimens were analyzed using a general linear mixed model fit with random effect for liver and backward stepwise regression analysis.
Results: FI was significantly associated with ablation zone volumes measured on gross specimens (p = 0.0047), but explained little of the variance (R = 0.21). Ablation zone volume decreased by 0.23 cm (95% confidence interval: -0.38, -0.08) for every 1 increase in FI. Neither VI nor VFI was significantly associated with ablation zone volumes (p > 0.05).
Conclusion: Although FI was associated with ablation zone volumes, it could not sufficiently explain their variability, limiting its clinical applicability. VI, FI and VFI are not clinically useful in the prediction of RF ablation zone volume in the liver. Advances in knowledge: Despite a significant association of FI with ablation zone volumes, VI, FI and VFI cannot be used for their prediction. Different Doppler vascular indices need to be investigated for clinical use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685127 | PMC |
http://dx.doi.org/10.1259/bjr.20160661 | DOI Listing |
PLoS One
January 2025
Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Objective: This study aimed to introduce and evaluate a novel software-based system, BioTrace, designed for real-time monitoring of thermal ablation tissue damage during image-guided radiofrequency ablation for hepatocellular carcinoma (HCC).
Methods: BioTrace utilizes a proprietary algorithm to analyze the temporo-spatial behavior of thermal gas bubble activity during ablation, as seen in conventional B-mode ultrasound imaging. Its predictive accuracy was assessed by comparing the ablation zones it predicted with those annotated by radiologists using contrast-enhanced computed tomography (CECT) 24 hours post-treatment, considered the gold standard.
Nat Cardiovasc Res
January 2025
Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education; National Key Laboratory of Frigid Zone Cardiovascular Diseases), Harbin Medical University, Harbin, China.
Targeting the cardiomyocyte cell cycle is a promising strategy for heart repair following injury. Here, we identify a cardiac-regeneration-associated PIWI-interacting RNA (CRAPIR) as a regulator of cardiomyocyte proliferation. Genetic ablation or antagomir-mediated knockdown of CRAPIR in mice impairs cardiomyocyte proliferation and reduces heart regenerative potential.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Biomedical Engineering, University of Cincinnati, UC Bioscience Center, 3159 Eden Ave., Cincinnati, Ohio, 45221, UNITED STATES.
Ultrasound echo decorrelation imaging can successfully monitor and control thermal ablation of animal liver and tumor tissue ex vivo and in vivo. However, normal and diseased human liver has substantially different physical properties that affect echo decorrelation. Here, effects of human liver tissue condition on ablation guidance by three-dimensional echo decorrelation imaging are elucidated in experiments testing closed-loop control of radiofrequency ablation (RFA) in normal and diseased human liver tissue ex vivo.
View Article and Find Full Text PDFZhonghua Xin Xue Guan Bing Za Zhi
January 2025
Department of Cardiology, General Hospital of Northern Theater Command, National Key Laboratory of Frigid Zone Cardiovascular Diseases, Shenyang110016, China.
To assess the efficacy and safety of "one-stop" procedures combining radiofrequency catheter ablation and left atrial appendage closure by guidance of intracardiac echocardiography(ICE) in elderly patients with atrial fibrillation. A retrospective cohort study was conducted on patients who underwent ICE-guided "one-stop" procedures at the Department of Cardiology, General Hospital of Northern Theater Command between December 2020 and January 2023. Patients were divided into elderly group (age≥60 years old) and non-elderly group (age 18-59 years old).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy.
Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!