In cancer cells, the reversible nature of the stemness status in terms of chemoresistance has been poorly characterized. In this study, we have simulated one cycle of environmental conditions to study such reversibility by first generating floating tumorspheres (FTs) from lung and breast cancer cells by culturing them in serum-free media without the addition of any external mitogenic stimulation, and subsequently (after 2 weeks) re-incubating them back in serum-containing media to simulate routine culture conditions (RCCs). We found that cancer cells are extremely plastic: cells grown under RCCs become multidrug-resistant when grown as FTs, but upon re-incubation under RCCs quickly re-attach and lose the acquired resistance. These phenotypic changes are accompanied by concomitant changes in the expression of key proteins associated with multiple pathways important for chemoresistance, survival, and stemness maintenance. Therefore, our strategy provides an excellent experimental model to study environmental factors that modulate the plasticity of cancer cells. J. Cell. Physiol. 232: 2280-2286, 2017. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444977PMC
http://dx.doi.org/10.1002/jcp.25725DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
lung breast
8
breast cancer
8
cancer
6
cells
5
cancer cell
4
cell plasticity
4
plasticity rapid
4
rapid reversal
4
reversal chemosensitivity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!