Controllable Synthesis of Mn Doped Nanoparticles by a Facile Anion Exchange Method.

Nanotechnology

State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.

Published: January 2017

Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1400 nm) is attracting extensive attention. Mn doped BaSO with broadband emission from 900 nm to 1400 nm is emerging as a new class of NIR phosphor for fluorescence imaging. Manganese has diverse valence states, thus it is difficult to prevent valence change of Mn during traditional synthesis process. In this work, BaSO:Mn nanoparticles with uniform size and morphology were first successfully prepared through a fast liquid-solid solution route at room temperature. The nanoparticles exhibit broadband NIR emission from Mn when excited by 808 nm lasers. This convenient strategy, based on an efficient anion exchange reaction, is proved effective for synthesizing nano-sized materials. The results reveal that our strategy has great potential in fabricating special valence state ion doped nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/28/2/025604DOI Listing

Publication Analysis

Top Keywords

anion exchange
8
fluorescence imaging
8
controllable synthesis
4
synthesis doped
4
doped nanoparticles
4
nanoparticles facile
4
facile anion
4
exchange method
4
method fluorescence
4
imaging second
4

Similar Publications

Two π-radical complexes containing bisazo-aromatic-centered radical anion (1•-) were synthesized through in-situ electron transfer from metal-to-ligand using [IrI] and 2-(2-Pyridylazo)azobenzene (1) in inert hydrocarbon solvent. These are characterized as diradical [IrIII(1•-)2]+[2]+ and monoradical [IrIII(1•-)Cl2(PPh3)] 3. In contrast, a rare metal-mediated hydrolytic cleavage of the C(sp2)-N bond occurred in protic solvent resulting in quaternary radical complex [IrIII(1•-)(1')(PPh3)]+(4)+.

View Article and Find Full Text PDF

Five alkali metal manganese(III) fluorophosphates, KMn(POF)F (I), RbMn(POF)F (II), RbMn(POF)(PO)F (III), RbMn(POF)(PO)F (IV), and CsMn(POF)F (V), were successfully synthesized using a hydrothermal method. The monofluorophosphate anion (POF) groups work as "chemical scissors" to promote low-dimensional spin structures with the aid of alkali metal cations. I and II had an = 2 uniform chain structure formed by corner-sharing -MnOF octahedra.

View Article and Find Full Text PDF

Dinitramide salts based on nitropyrazole-diaminotriazole hybrid: novel ionic energetic materials with high-energy and low-sensitivity.

Phys Chem Chem Phys

January 2025

Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.

In this study, employing a simple anion exchange strategy and straightforward three-step synthetic route, a pair of promising nitrogen-rich heterocyclic cation and oxygen-rich anion were assembled together to generate two novel dinitramide energetic salts, both of which exhibit prominent detonation performance comparable to benchmark explosive RDX while possessing significantly lower mechanical sensitivity than RDX, thereby highlighting them as promising candidates for advanced secondary explosives. This work has directly led to a practical protocol for the design of chloride-free environmentally friendly IEMs, and accelerates the development of organic explosives with high-energy and low-sensitivity.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are gaining recognition as promising therapeutic carriers for immune modulation. We investigated the potential of EVs derived from HEK293FT cells to stabilize and deliver interleukin-10 (IL-10), a key anti-inflammatory cytokine. Using minicircle (MC) DNA vectors, we achieved IL-10 overexpression and efficient incorporation into EVs, yielding superior stability compared to free, recombinant IL-10 protein.

View Article and Find Full Text PDF

Comparison of three different in vitro digestion methods for carbohydrates.

J Food Sci Technol

January 2025

College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou, 450001 China.

Spectrophotometer method, ELISA, and High-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) method have been widely used to quantify and characterize the glucose released from rice after in vitro digestion. Despite this, the results of the three methods may not be comparable. This work investigated the limitation of detection (LOD) and quantification (LOQ) of the glucose released after in vitro rice digestion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!