Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is generally known that gold nanoparticles are localised in the cytoplasm and, if synthesised in small sizes or functionalized with specific proteins, they enter the cell nucleus. However, there is no report emphasising the importance of surface functionalization in their accumulation in the nucleolus. Here, for the first time in the literature, it is proposed that functionalization of gold nanoparticles with a thin layer of polyethyleneimine (PEI) spearheads them to the nucleolus of hard-to-transfect post-mitotic dorsal root ganglion neurones in a size-independent manner. As a potential for theranostic applications, it was found that functionalization with a thin layer of PEI affected the emission signal intensity of gold nanoparticles so that the cellular biodistribution of nanoparticles was visualised clearly under both confocal and two-photon microscopes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/28/2/025103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!