Cytotoxicity of carbon nanohorns in different human cells of the respiratory system.

J Toxicol Environ Health A

a Department of Occupational, Social and Environmental Medicine , Georg-August-University Göttingen, Göttingen , Germany.

Published: May 2017

One of the new synthetic carbon-based nanomaterials is carbon nanohorns (CNH). A potential risk for employees of production processes is an unintentional intake of these nanomaterials via inhalation. Once taken up, nanoparticles might interact with cells of different tissues as well as with intercellular substances. These interactions may have far-reaching consequences for human health. Currently, many gaps in available information on the CNH toxicological profile remain. The aim of this study was to determine the cytotoxicity of CNH particles on human epithelial cells of the respiratory system with special consideration given to different particle sizes. In all cell lines, cell viability was reduced after 24 h of exposure up to 60% and metabolic activity as evidenced by mitochondrial activity was lowered to 9% at a concentration of 1 g/L. The three respiratory cell lines differed in their sensitivity. The most robust cells were the bronchial epithelial cells. Further, particle size fractions induced different adverse effect strength, whereby no correlation between particle size fraction and toxicity was found. These findings demonstrate the need for further information regarding the behavior and effect strength of nanomaterial. To avoid the production of new harmful materials, a more comprehensive integration of results from toxicity studies in the development processes of engineered nanomaterials is recommended not only from an occupational viewpoint but also from an environmental perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15287394.2016.1219594DOI Listing

Publication Analysis

Top Keywords

carbon nanohorns
8
cells respiratory
8
respiratory system
8
epithelial cells
8
cell lines
8
particle size
8
cells
5
cytotoxicity carbon
4
nanohorns human
4
human cells
4

Similar Publications

Constructing fast electron transfer pathways and abundant electro-active sites is an effective strategy to improve the oxygen evolution reaction (OER) performance of catalysts. Herein, structural engineering and dual-phase engineering were employed to construct a NiS nanoparticle-encapsulated MOF configured with a pseudo-neuronal structure (NiS/MOF/HT). It was found that the pseudo-neuronal structure, constructed with a carbon nanohorn (CNH) and carbon nanotube (CNT), provided fast electron transfer pathways and abundant exposed active sites.

View Article and Find Full Text PDF

-butylhydroquinone (TBHQ) is a phenolic substance that is commonly employed to prevent food oxidation. Excessive or improper utilization of this antioxidant can not only impact food quality but may also pose potential risks to human health. In this study, an ultrasensitive, stable, and easily operable ratiometric electrochemical sensor was successfully fabricated by combining the tubular (3,4-ethylenedioxythiophene) (T-PEDOT) with single-wall carbon nanohorns (SWCNHs) for the detection of TBHQ antioxidants in food.

View Article and Find Full Text PDF

Engineering carbon-based nanomaterials for the delivery of platinum compounds: An innovative cancer disarming frontier.

Environ Res

December 2024

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Carbon-based nanomaterials have been frequently used as one of the most advanced and fascinating nanocarriers for drug delivery applications due to their unique physicochemical properties. Varying types of carbon nanomaterials (CNMs) including carbon nanotubes, graphene, graphene oxides, carbon nanohorns, fullerenes, carbon nanodots, and carbon nanodiamonds are promising candidates for designing novel systems to deliver platinum compounds. CNMs modification with various moieties renders vast bio-applications in the area of targeted and organelle-specific cancer therapy.

View Article and Find Full Text PDF

In this study, a new and simple glassy carbon electrode modified with carbon nanohorns (SWCNH/GCE) was used for the determination of Cr(VI) in aqueous matrices via adsorptive cathodic stripping voltammetry (AdCSV). The modified electrode was characterized via field emission scanning electron microscopy and cyclic voltammetry, which revealed a homogeneous distribution of spherical agglomerates of SWCNH on the electrode surface. The modification increased the electrochemically active area from 0.

View Article and Find Full Text PDF

The principal component of cotton fibers is the cellulose biological macromolecule. However, its highly flammable nature has significantly constrained its utilization in fields where flame retardancy is essential. Herein, in this work, a highly effective binary composite flame retardant coating (APP/MEL-SWCNHs) with ammonium polyphosphate and modified single-walled carbon nanohorns (MEL-SWCNHs) was chemically attached to cotton fabric.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!