Transcriptome differences between fiber-type and seed-type variety exposed to salinity.

Physiol Mol Biol Plants

Plant Improvement and Utilization Lab, Yunnan University, Kunming, 650091 Yunnan China.

Published: October 2016

The industrial hemp varieties 'Yunma 5' and 'Bamahuoma,' which demonstrate growth vigor and environmental adaptability, have been primarily cultivated in Yunnan and Guangxi, China, respectively, for fiber and seeds. The results of physiological measurements showed the phenotypic differences between the two varieties in response to salt stress. RNA-Seq analysis was first performed on leaves of both varieties sampled at four time intervals (0, 2, 4, 6 days) after treatment with salt (500 mM NaCl) We identified 220 co-up-regulated differentially expressed genes (DEGs) in the two varieties, while 26 up-regulated DEGs and 24 down-regulated DEGs were identified exclusively in the single varieties after 2 days of salt stress. Among the 220 DEGs, we identified 22 transcription factors, including key transcription factors involved in salt stress, such as MYB, NAC, GATA, and HSF. We applied gene expression profile analysis and found that 'Yunma 5' and 'Bamahuoma' have variety-specific pathways for resisting salt stress. The DEGs of 'Yunma 5' were enriched in spliceosome and amino acid metabolism genes, while the DEGs of 'Bamahuoma' were enriched in fatty acid metabolism, amino acid metabolism, and endoplasmic reticulum protein processing pathway. Although there were common DEGs, such as genes encoding cysteine protease and alpha/beta-hydrolase superfamily, the two varieties' responses to salt stress impacted different metabolic pathways. The DEGs that were co-expressed in both varieties under stress may provide useful insights into the tolerance of cultivated hemp and other bast fiber crops to saline soil conditions. These transcriptomes also represent reference sequences for industrial hemp.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120038PMC
http://dx.doi.org/10.1007/s12298-016-0381-zDOI Listing

Publication Analysis

Top Keywords

salt stress
20
acid metabolism
12
industrial hemp
8
'yunma 'bamahuoma'
8
degs
8
genes degs
8
degs identified
8
transcription factors
8
amino acid
8
varieties
6

Similar Publications

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Under salt stress, plasma membrane proteins regulate ion homeostasis and the balance between reactive oxygen species (ROS). In this study, we investigated the functions of two small membrane proteins-MsRCI2B (tailless) and MsRCI2E (tailed)-encoded by the RCI2 (Rare Cold Inducible 2) gene family in Medicago sativa (alfalfa). We identified the distinct subcellular localization and expression patterns of these proteins under salt stress.

View Article and Find Full Text PDF

Salt stress severely affects the growth and development of tomato. Strigolactones (SLs) and DNA methylation have been shown to be involved in the growth and development and response to salt stress in tomato. However, the regulation of SLs on DNA methylation in tomato under salt stress remains unclear.

View Article and Find Full Text PDF

Label-free quantitative imaging of conjunctival goblet cells.

Ocul Surf

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:

Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.

Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!