ESE3 Inhibits Pancreatic Cancer Metastasis by Upregulating E-Cadherin.

Cancer Res

Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin, P.R. China.

Published: February 2017

The ETS family transcription factor ESE3 is a crucial element in differentiation and development programs for many epithelial tissues. Here we report its role as a tumor suppressor in pancreatic cancer. We observed drastically lower ESE3 expression in pancreatic ductal adenocarcinomas (PDAC) compared with adjacent normal pancreatic tissue. Reduced expression of ESE3 in PDAC correlated closely with an increase in lymph node metastasis and vessel invasion and a decrease in relapse-free and overall survival in patients. In functional experiments, downregulating the expression of ESE3 promoted PDAC cell motility and invasiveness along with metastasis in an orthotopic mouse model. Mechanistic studies in PDAC cell lines, the orthotopic mouse model, and human PDAC specimens demonstrated that ESE3 inhibited PDAC metastasis by directly upregulating E-cadherin expression at the level of its transcription. Collectively, our results establish ESE3 as a negative regulator of PDAC progression and metastasis by enforcing E-cadherin upregulation. .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313376PMC
http://dx.doi.org/10.1158/0008-5472.CAN-16-2170DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
8
upregulating e-cadherin
8
expression ese3
8
pdac cell
8
orthotopic mouse
8
mouse model
8
ese3
7
pdac
7
metastasis
5
ese3 inhibits
4

Similar Publications

Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease's development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.

Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.

View Article and Find Full Text PDF

The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones.

View Article and Find Full Text PDF

Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD) has been linked to pancreatic diseases, but evidence from population-based studies with liver histology is lacking.

Aims And Methods: In this population-based cohort including all Swedish adults (n = 8563) with biopsy-proven MASLD, we aimed to investigate incidences of pancreatic diseases compared with matched reference individuals from the general population (n = 38,858) and full siblings (n = 6696). Using Cox proportional hazard models, we calculated multivariable adjusted hazard ratios (aHRs) and confidence intervals (CIs).

View Article and Find Full Text PDF

Among the various types of pancreatic cancers, pancreatic ductal adenocarcinoma (PDAC) is the most lethal and aggressive, due to its tendency to metastasize quickly and has a particularly low five-year survival rate. Carbohydrate antigen 19-9 (CA 19-9) is the only biomarker approved by the Food and Drug Administration for PDAC and has been a focal point in diagnostic strategies, but its sensitivity and specificity are not sufficient for early and accurate detection. To address this issue, we introduce a synergistic approach combining CA 19-9 levels with a graphene oxide (GO)-based blood test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!