Grapevine (Vitis spp.) can be infected by numerous viruses that are often widespread and of great economic importance. Reliable detection methods are necessary for sanitary selection which is the only way to partly control grapevine virus diseases. Biological indexing and ELISA are currently the standard methods for screening propagation material, and PCR-methods are becoming increasingly popular. Due to the diversity of virus isolates, it is essential to verify that the tests allow the detection of the largest possible virus populations. We developed three quadruplex TaqMan RT-qPCR assays for detecting nine different viruses that cause considerable damage in many vineyards world-wide. Each assay is designed to detect three viruses and the grapevine Actin as an internal control. A large population of grapevines from diverse cultivars and geographic location was tested for the presence of nine viruses: Arabis mosaic virus (ArMV), Grapevine fleck virus (GFkV), Grapevine fanleaf virus (GFLV), Grapevine leafroll-associated viruses (GLRaV-1, -2, -3), Grapevine rupestris stem pitting-associated virus (GRSPaV), Grapevine virus A (GVA), and Grapevine virus B (GVB). In general, identical results were obtained with multiplex TaqMan RT-qPCR and ELISA although, in some cases, viruses could be detected by only one of the two techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jviromet.2016.12.003 | DOI Listing |
Food Environ Virol
January 2025
Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil.
This study aimed to investigate the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in water samples obtained during the coronavirus disease 2019 pandemic period, employing cross-assembly phage (crAssphage) as a fecal contamination biomarker and next-generation sequencing protocols to characterize SARS-CoV-2 variants. Raw wastewater and surface water (stream and sea) samples were collected for over a month in Rio de Janeiro, Brazil. Ultracentrifugation and negatively charged membrane filtration were employed for viral concentration of the wastewater and surface water samples, respectively.
View Article and Find Full Text PDFIn Vivo
December 2024
Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México, Toluca de Lerdo, Mexico
Background/aim: Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 infection, manifests a wide range of clinical symptoms ranging from mild to moderate and severe. Host-related factors influence the course of SARS-CoV-2 infection; for instance, the expression of host microRNAs (miRNAs) could influence the progression and complications of COVID-19. This study aimed to determine the expression pattern of endogenous miRNAs in 80 severe COVID-19 patients compared to a group of healthy individuals.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
BMC Med Genomics
December 2024
Department of International Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China.
Background: The role of the vitamin D receptor single nucleotide polymorphism FOKI (VDR-FOKI) (rs2228570) in genetic susceptibility to type 2 diabetic kidney disease (T2DKD) remains uncertain. This study investigated the relationship between VDR-FOKI and T2DKD within the Chinese Plateau Han population and analyzed the underlying mechanisms.
Methods: A total of 316 subjects were enrolled, including 44 healthy adults, 114 individuals with type 2 diabetes mellitus (T2DM), and 158 patients with T2DKD.
Int J Mol Sci
December 2024
Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen that causes porcine reproductive and respiratory syndrome (PRRS), leading to abortion of sows and the manifestation of respiratory diseases in piglets. PRRSV strains are categorized into two distinct genotypes: PRRSV-1 and PRRSV-2. PRRSV-2 can be further classified into several lineages, including sub-lineage 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!