The contribution of microRNAs to the regulation of mRNA expression during physiological and developmental processes are well-recognized. These roles are being expanded by recent observations that emphasize the capability of miRNA to participate in inter-cellular signaling and communication. Several factors support a functional role for miRNA as mediators of cell-to-cell signaling. miRNA are able to exist within the extracellular milieu or circulation, and their stability and integrity maintained through association with binding proteins or lipoproteins, or through encapsulation within cell-derived membrane vesicles. Furthermore, miRNA can retain functionality and regulate target gene expression following their uptake by recipient cells. In this overview, we review specific examples that will highlight the potential of miRNA to serve as paracrine signaling mediators in metabolic diseases and cancers. Elucidating the mechanisms involved in inter-cellular communication involving miRNA will provide new insights into disease pathogenesis and potential therapeutic opportunities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147504 | PMC |
http://dx.doi.org/10.1016/j.beem.2016.07.005 | DOI Listing |
Front Immunol
December 2024
Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
Mesenchymal stem cells (MSCs), recognized for their self-renewal and multi-lineage differentiation capabilities, have garnered considerable wide attention since their discovery in bone marrow. Recent studies have underscored the potential of MSCs in immune regulation, particularly in the context of autoimmune diseases, which arise from immune system imbalances and necessitate long-term treatment. Traditional immunosuppressive drugs, while effective, can lead to drug tolerance and adverse effects, including a heightened risk of infections and malignancies.
View Article and Find Full Text PDFCancer Cell
December 2024
National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, China; Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China. Electronic address:
Glioblastoma is a highly aggressive primary brain tumor with glioblastoma stem cells (GSCs) enforcing the intra-tumoral hierarchy. Plasma cells (PCs) are critical effectors of the B-lineage immune system, but their roles in glioblastoma remain largely unexplored. Here, we leverage single-cell RNA and B cell receptor sequencing of tumor-infiltrating B-lineage cells and reveal that PCs are aberrantly enriched in the glioblastoma-infiltrating B-lineage population, experience low level of somatic hypermutation, and are associated with poor prognosis.
View Article and Find Full Text PDFNat Commun
January 2025
Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
Renewal of the catecholamine-secreting chromaffin cell population of the adrenal medulla is necessary for physiological homeostasis throughout life. Definitive evidence for the presence or absence of an adrenomedullary stem cell has been enigmatic. In this work, we demonstrate that a subset of sustentacular cells endowed with a support role, are in fact adrenomedullary stem cells.
View Article and Find Full Text PDFNat Commun
January 2025
Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
During recent decades, changes in lifestyle have led to widespread nutritional obesity and its related complications. Remodelling adipose tissue as a therapeutic goal for obesity and its complications has attracted much attention and continues to be actively explored. The endothelium lines all blood vessels and is close to all cells, including adipocytes.
View Article and Find Full Text PDFJ Adv Res
December 2024
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. Electronic address:
Introduction: The periodontal ligament (PDL), a dynamic connective tissue that anchors teeth to the alveolar bone, enables tooth retention and facilitates continuous turnover. The integrity of the periodontium is maintained by periodontal ligament stem cells (PDLSCs), whose dysfunction and senescence with age can disrupt tissue homeostasis, hinder injury repair, and lead to tooth loss, ultimately impacting overall health. Transforming growth factor-β1 (TGF-β1) is known for its regenerative properties and as a functional paracrine factor in stem cell therapy, but its precise role in modulating PDLSC activity remains controversial and poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!