AI Article Synopsis

  • 3D tumor models are becoming important in research as they better mimic the tumor environment than traditional flat cultures, allowing for insights into tumor-stroma interactions.
  • By controlling the placement and conditions of cells in these models, researchers can study how physical cues influence the behavior of cells, particularly in relation to drug sensitivity in tumors like Ewing sarcoma.
  • The study found that co-culturing Ewing sarcoma cells with mesenchymal stem cells in a 3D setup enhanced their growth and resistance to treatments, suggesting that targeting both insulin-like growth factor-1 receptor and specific signaling pathways could improve cancer therapies.

Article Abstract

Three-dimensional (3D) tumor models are gaining traction in the research community given their capacity to mimic aspects of the tumor microenvironment absent in monolayer systems. In particular, the ability to spatiotemporally control cell placement within ex vivo 3D systems has enabled the study of tumor-stroma interactions. Furthermore, by regulating biomechanical stimuli, one can reveal how biophysical cues affect stromal cell phenotype and how their phenotype impacts tumor drug sensitivity. Both tumor architecture and shear force have profound effects on Ewing sarcoma (ES) cell behavior and are known to elicit ligand-mediated activation of the insulin-like growth factor-1 receptor (IGF-1R), thereby mediating resistance of ES cells to IGF-1R inhibitors. Here, we demonstrate that these same biophysical cues-modeled by coculturing ES cells and mesenchymal stem cells (MSCs) in 3D scaffolds within a flow perfusion bioreactor-activate interleukin-6 and transcription factor Stat3. Critically, an active Stat3 pathway drastically alters the equilibrium of IGF-1R-targeted ligands (IGF-1) and antagonists (IGFBP-3) secreted by MSCs. To elucidate how this might promote ES tumor growth under physiological shear-stress conditions, ES cells and MSCs were co-cultured by using a flow perfusion bioreactor at varying ratios that simulate a wide range of native MSC abundance. Our results indicate that ES cells and MSCs stimulate each other's growth. Co-targeting IGF-1R and Stat3 enhanced antineoplastic activity over monotherapy treatment. Although this discovery requires prospective clinical validation in patients, it reveals the power of employing a more physiological tissue-engineered 3D tumor model to elucidate how tumor cells co-opt stromal cells to acquire drug resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240012PMC
http://dx.doi.org/10.1089/ten.TEA.2016.0369DOI Listing

Publication Analysis

Top Keywords

cells mscs
12
drug resistance
8
tumor
8
tissue-engineered tumor
8
tumor model
8
ewing sarcoma
8
flow perfusion
8
cells
7
modeling stroma-induced
4
stroma-induced drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!