Targeting drug carrier systems based on graphene oxide (GO) are of great interest, since it can selectively deliver anticancer drugs to tumor cells, and enhance therapeutic activities with minimized side effects. However, direct grafting target molecules on GO usually results in aggregation of physiological fluid, limiting its biomedical applications. Here, we propose a new strategy to construct targeting GO drug carrier using folic acid grafted bovine serum albumin (FA-BSA) as both the stabilizer and targeting agent. FA-BSA decorated graphene oxide-based nanocomposite (FA-BSA/GO) was fabricated by the physical adsorption of FA-BSA on GO, which was developed as a targeting drug delivery carrier. FA-BSA/GO as the drug carrier was associated with anticancer drug doxorubicin (DOX) through π-π and hydrogen-bond interactions, resulting in high drug loading (up to 437.43μgDOX/mgFA-BSA/GO). FA-BSA/GO/DOX systems demonstrated pH responsive and sustained drug release. The hemolysis ratio of FA-BSA/GO was less than 5%, demonstrating its safety as drug carrier for intravenous injection. Moreover, in vitro cell cytotoxicity and cellular uptake analysis suggested that the constructed FA-BSA/GO/DOX nanohybrids could significantly enhance the anticancer activity. The present work has confirmed the potential for fabrication of highly stable and dispersible GO-based targeting delivery systems for efficient cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2016.11.097DOI Listing

Publication Analysis

Top Keywords

drug carrier
20
targeting drug
12
drug
9
bovine serum
8
serum albumin
8
decorated graphene
8
graphene oxide
8
cancer therapy
8
carrier
6
targeting
5

Similar Publications

Extracellular vesicles (EVs) have been demonstrated to own the advantages in evading phagocytosis, crossing biological barriers, and possessing excellent biocompatibility and intrinsic stability. Based on these characteristics, EVs have been used as effective therapeutic carriers for drug delivery, but the low drug loading capacity greatly limits further applications. Herein, we developed a drug loading method based on cell-penetrating peptide (CPP) to enhance the encapsulation of therapeutic reagents in EVs, and EVs-based drug delivery system achieved higher killing efficacy to tumor cells.

View Article and Find Full Text PDF

Introduction: Genetic load influences the therapeutic response to conventional drugs in Alzheimer's disease (AD). Pharmacogenetics (PGx) is the best option to reduce drug-drug interactions and adverse drug reactions in patients undergoing polypharmacy regimens. However, there are important limitations that make it difficult to incorporate pharmacogenetics into routine clinical practice.

View Article and Find Full Text PDF

Drug delivery vehicles optimize therapeutic outcomes by enhancing drug efficacy, minimizing side effects, and providing controlled release. Injectable hydrogels supersede conventional ones in the field of drug delivery owing to their less invasive administration and improved targeting. However, they face challenges such as low biodegradability and biocompatibility, potentially compromising their effectiveness.

View Article and Find Full Text PDF

Cancer remains one of the leading causes of death worldwide, highlighting the urgent need for novel antitumor drugs. Natural products have long been a crucial source of anticancer agents. Among these, emodin (EMO), a multifunctional anthraquinone compound, exhibits significant anticancer effects but is hindered in clinical applications by challenges such as low solubility, rapid metabolism, poor bioavailability, and off-target toxicity.

View Article and Find Full Text PDF

Plant-derived nanovesicles have gained attention given their similarity to mammalian exosomes and advantages such as low cost, sustainability, and tissue targeting. Thus, they hold promise for disease treatment and drug delivery. In this study, we proposed a time-efficient method, PEG 8000 combined with sucrose density gradient centrifugation to prepare ginger-derived nanovesicles (GDNVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!