Study of the Chemical Space of Selected Bacteriostatic Sulfonamides from an Information Theory Point of View.

Chemphyschem

Instituto Carlos I de Fsica Teórica y Computacional, Universidad de Granada, 18071, Granada, Spain.

Published: December 2016

The relative structural location of a selected group of 27 sulfonamide-like molecules in a chemical space defined by three information theory quantities (Shannon entropy, Fisher information, and disequilibrium) is discussed. This group is composed of 15 active bacteriostatic molecules, 11 theoretically designed ones, and para-aminobenzoic acid. This endeavor allows molecules that share common chemical properties through the molecular backbone, but with significant differences in the identity of the chemical substituents, which might result in bacteriostatic activity, to be structurally classified and characterized. This is performed by quantifying the structural changes on the electron density distribution due to different functional groups and number of electrons. The macroscopic molecular features are described by means of the entropy-like notions of spatial electronic delocalization, order, and uniformity. Hence, an information theory three-dimensional space (IT-3D) emerges that allows molecules with common properties to be gathered. This space witnesses the biological activity of the sulfonamides. Some structural aspects and information theory properties can be associated, as a result of the IT-3D chemical space, with the bacteriostatic activity of these molecules. Most interesting is that the active bacteriostatic molecules are more similar to para-aminobenzoic acid than to the theoretically designed analogues.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201600790DOI Listing

Publication Analysis

Top Keywords

chemical space
12
active bacteriostatic
8
bacteriostatic molecules
8
theoretically designed
8
para-aminobenzoic acid
8
allows molecules
8
bacteriostatic activity
8
molecules
6
space
5
bacteriostatic
5

Similar Publications

Completion of lunar magma ocean solidification at 4.43 Ga.

Proc Natl Acad Sci U S A

January 2025

Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095.

Crystallization of the lunar magma ocean yielded a chemically unique liquid residuum named KREEP. This component is expressed as a large patch on the near side of the Moon and a possible smaller patch in the northwest portion of the Moon's South Pole-Aitken basin on the far side. Thermal models estimate that the crystallization of the lunar magma ocean (LMO) could have spanned from 10 and 200 My, while studies of radioactive decay systems have yielded inconsistent ages for the completion of LMO crystallization covering over 160 My.

View Article and Find Full Text PDF

High-pressure, high-temperature synthesis at 12 GPa between 750 and 1000°C for 30 to 300 min yields the last missing rare-earth metal monogermanide, YbGe. Powder and single-crystal X-ray diffraction measurements reveal that the compound crystallizes in a FeB-type structure (space group Pnma, a = 7.901(2) Å, b = 3.

View Article and Find Full Text PDF

CsCuI is considered a promising material for lead-free resistive switching (RS) memory devices due to its low operating voltage, high on/off ratio, and excellent thermal and environmental stability. However, conventional lead-free halide-based RS memory devices typically require solvent-based thin-film formation processes that involve toxic organic and acidic solvents, and the effects of process conditions on device performance are often not fully understood. This study investigates the effect of crystallinity on CsCuI-based RS memory devices fabricated thermal evaporation.

View Article and Find Full Text PDF

Nematophagous fungi as biological control agents of parasitic nematodes in soils of wildlife parks.

Int J Parasitol Parasites Wildl

April 2025

Institute of Veterinary Medicine, Georg-August-University of Goettingen, Burckhardtweg 2, 37077, Goettingen, Germany.

Infections with soil-transmitted helminths pose a significant threat to wildlife in enclosures, where transmission of these parasitic larvae is easier due to the limited space. Nematophagous fungi offer a promising solution as they can naturally control these nematodes. In this study, three nematophagous fungi (, , ) purchased from the non-profit global biological resource center ATCC were tested for their suitability as biological control agents.

View Article and Find Full Text PDF

Heat and drought events are increasing in frequency and intensity, posing significant risks to natural and agricultural ecosystems with uncertain effects on the net ecosystem CO exchange (NEE). The current Vegetation Photosynthesis and Respiration Model (VPRM) was adjusted to include soil moisture impacts on the gross ecosystem exchange (GEE) and respiration ( ) fluxes to assess the temporal variability of NEE over south-western Europe for 2001-2022. Warming temperatures lengthen growing seasons, causing an increase in GEE, which is mostly compensated by a similar increment in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!