Short endogenous peptides represent one of the most important constituents of the mammalian body's general regulatory system. Some synthesized analogs and modified natural peptides (eg, corticotropins) also show high biological activity. Nevertheless, the mechanism of action of regulatory peptides remains unclear. To explain the effects of peptides of intermolecular processes, the hypothesis that a synactonal mechanism underlies the action of regulatory peptides, exemplified by the heptapeptide Semax, has been proposed. Thus, in the total pool of Semax metabolites, which includes the cleavage products of the parental molecule, we can distinguish the functional core, represented by the major metabolic products-peptides HFPGP and PGP. These peptides have their own binding sites with similar although differing characteristics. Together with Semax, they constitute a single complex of bioregulators acting in a certain sequence and in interaction, ie, synacton. It can be assumed that the diverse clinically significant effects of the drug Semax are determined by its synacton. Specific interactions between some tritium-labeled peptides (basic constituents of the Semax synacton) and plasma membranes of neurons have been characterized. Only a few peptides of the Semax synacton showed competitive activity for the Semax binding sites. Fragments comprising 5 amino acid residues (EHFPG and HFPGP) showed the highest competitive activity. We also characterized the processes of specific ligand-receptor interactions of some tritium-labeled corticotropins ([ H-Pro]MEHFPGP, [ H-Pro]HFPGP, and [ H-Pro]PGP) by applying mathematical discriminative models (Scatchard, Hill, Bjerrum, and Lineweaver-Burk plots). So the intermolecular interactions of these peptides with plasma membranes of neuronal brain targets are probably not limited by specific binding at orthosteric sites. The effect of peptides that act in the synacton considerably extends the regulatory potential of the initial molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmr.2597 | DOI Listing |
Gut Microbes
December 2025
Department of Oncology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
() exhibits aberrant changes in patients with colitis, and it has been reported to dominate the colonic mucosal immune response. Here, we found that PMA1 expression was significantly increased in from patients with IBD compared to that in healthy controls. A Crispr-Cas9-based fungal strain editing system was then used to knock out PMA1 expression in .
View Article and Find Full Text PDFRecent Adv Drug Deliv Formul
January 2025
Laboratory of Innovation in Science and Technology - LACITEC, Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, PI, Brazil.
Duchenne muscular dystrophy is a neuromuscular disease with an overall incidence of between 1 in 5,000 newborn males. Carriers may manifest progressive muscle weakness, resulting from the progressive degeneration of skeletal muscles, generating cardiac and respiratory disorders. Considering the lack of effective treatments, different therapeutic approaches have been developed, such as protein synthesis and extracellular matrix derivatives that can be used to improve muscle regeneration, maintenance, or repair.
View Article and Find Full Text PDFActa Crystallogr A Found Adv
March 2025
Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-11 Mustuno, Atsuta-ku, Nagoya, 456-8587, Japan.
Due to the short de Broglie wavelength of electrons compared with X-rays, the curvature of their Ewald sphere is low, and individual electron diffraction patterns are nearly flat in reciprocal space. As a result, a reliable unit-cell determination from a set of randomly oriented electron diffraction patterns, an essential step in serial electron diffraction, becomes a non-trivial task. Here we describe an algorithm for unit-cell determination from a set of independent electron diffraction patterns, as implemented in the program PIEP (Program for Interpreting Electron diffraction Patterns), written in the early 1990s.
View Article and Find Full Text PDFBioact Mater
April 2025
State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Biomimetic neural substitutes, constructed through the bottom-up assembly of cell-matrix modulus via 3D bioprinting, hold great promise for neural regeneration. However, achieving precise control over the fate of neural stem cells (NSCs) to ensure biological functionality remains challenging. Cell behaviors are closely linked to cellular dynamics and cell-matrix mechanotransduction within a 3D microenvironment.
View Article and Find Full Text PDFJACS Au
January 2025
Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100, Copenhagen, Denmark.
Cysteine thioesters are involved in a myriad of central biological transformations due to their unique reactivity. Despite their well-studied properties, we discovered an unexpected transamidation reaction of cysteine thioesters that leads to peptide backbone cleavage. -Acylcysteine-containing peptides were found to spontaneously fragment by cleavage of the amide bond in the -1 position to the acylated cysteine residue at pH 8-10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!