A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of biopolymer matrices on relaxometric properties of contrast agents. | LitMetric

Impact of biopolymer matrices on relaxometric properties of contrast agents.

Interface Focus

Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy; Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy.

Published: December 2016

Properties of water molecules at the interface between contrast agents (CAs) for magnetic resonance imaging and macromolecules could have a valuable impact on the effectiveness of metal chelates. Recent studies, indeed, demonstrated that polymer architectures could influence CAs' relaxivity by modifying the correlation times of the metal chelate. However, an understanding of the physico-chemical properties of polymer/CA systems is necessary to improve the efficiency of clinically used CAs, still exhibiting low relaxivity. In this context, we investigate the impact of hyaluronic acid (HA) hydrogels on the relaxometric properties of Gd-DTPA, a clinically used CA, to understand better the determining role of the water, which is crucial for both the relaxation enhancement and the polymer conformation. To this aim, water self-diffusion coefficients, thermodynamic interactions and relaxometric properties of HA/Gd-DTPA solutions are studied through time-domain NMR relaxometry and isothermal titration calorimetry. We observed that the presence of Gd-DTPA could alter the polymer conformation and the behaviour of water molecules at the HA/Gd-DTPA interface, thus modulating the relaxivity of the system. In conclusion, the tunability of hydrogel structures could be exploited to improve magnetic properties of metal chelates, inspiring the development of new CAs as well as metallopolymer complexes with applications as sensors and memory devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5071819PMC
http://dx.doi.org/10.1098/rsfs.2016.0061DOI Listing

Publication Analysis

Top Keywords

relaxometric properties
12
contrast agents
8
water molecules
8
metal chelates
8
polymer conformation
8
properties
6
impact biopolymer
4
biopolymer matrices
4
matrices relaxometric
4
properties contrast
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!