Silica carriers equipped with molecular and supramolecular pH-sensitive nanovalves were designed by combination of sol-gel synthesis and selective postsynthetic modification. Mesoporous structure of synthesized materials was characterized by low-temperature nitrogen adsorption-desorption, small-angle X-ray diffraction and transmission electron microscopy. Chemical immobilization of -['-('-phenyl)-2-aminophenyl]aminoalkyl groups was confirmed by IR spectral and chemical analyses of surface layer. Loading and release behaviour of synthesized drug carriers was studied in phosphate buffer solutions with pH 5.0 and pH 7.0 using doxorubicin (Dox) as a test molecule. It was found that the loading efficiency of synthesized materials determined by UV spectroscopy measurements reached 59-76%, whereas cumulative value of Dox released from silica materials equipped with molecular and supramolecular nanovalves into the phosphate buffer solution with pH 5.0 reached up to 48% and 51%, respectively. It was proved that aromatic amino groups and surface supramolecular structures localized near pore openings play an essential role in pH-controlled Dox release.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5071812PMC
http://dx.doi.org/10.1098/rsfs.2016.0041DOI Listing

Publication Analysis

Top Keywords

equipped molecular
8
molecular supramolecular
8
synthesized materials
8
phosphate buffer
8
mesoporous silica
4
silica nanoparticles
4
nanoparticles equipped
4
equipped surface
4
surface nanovalves
4
nanovalves ph-controlled
4

Similar Publications

Extracellular vesicles (EVs) are membrane-bound structures produced and released into the extracellular space by all types of cells. Due to their characteristics, EVs play crucial roles in cellular communication and signaling, holding an immense potential as biomarkers and molecular transporters. Various methods have been developed to label and characterize EVs, however, visualizing EVs remains a process that requires highly specialized and expensive equipment, which is not always available in all the laboratories.

View Article and Find Full Text PDF

Background: Rising antimicrobial resistance (AMR) is an acute public health emergency impeding the clinical efficacy of surgical interventions. Biliary stent placement is one of the routine surgical procedures that rarely lead to infections that are empirically managed by broad-spectrum β-lactams and fluoroquinolones. Critical priority pathogens, such as carbapenem-resistant Escherichia coli challenge treatment outcomes and infection prevention.

View Article and Find Full Text PDF

Robot-Assisted Radical Prostatectomy Using the KangDuo Surgical Robot-1500: A Prospective, Multicenter, Single-Arm Clinical Study.

J Endourol

January 2025

Department of Urology, Peking University First Hospital, Institution of Urology, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Peking University, Beijing, China.

The KangDuo Surgical Robot-1500 (KD-SR-1500) is a newly developed surgical robot. We aim to evaluate the feasibility and efficiency of the KD-SR-1500 system for robot-assisted radical prostatectomy (RARP). This prospective, multicenter, single-arm clinical study was conducted among 18-75-year-old patients with suspected T1-2N0M0 prostate cancer scheduled for RARP.

View Article and Find Full Text PDF

To clone DNA sequences quickly and precisely into plasmids is essential for molecular biology studies. Some cloning vectors have been developed for the cloning of PCR products, including blunt-end and T-A cloning. However, different plasmids are required for the cloning of PCR products with blunt ends and 3' A overhang ends.

View Article and Find Full Text PDF

Selection and Engineering of Novel Brighter Bioluminescent Reporter Gene and Color- Tuning Luciferase for pH-Sensing in Mammalian Cells.

Biosensors (Basel)

January 2025

Laboratory of Biochemistry, Molecular Biology and Bioluminescent Systems Technology, Department of Physics, Chemistry and Mathematics, Federal University of Sao Carlos (UFSCAR), Rodovia João Leme dos Santos, km 110, Sorocaba 18052-780, SP, Brazil.

Firefly luciferases have been extensively used for bioanalytical applications, including their use as bioluminescent reporters, biosensors, and for bioimaging biological and pathological processes. Due to their intrinsic pH- sensitivity, in recent years we have demonstrated that firefly luciferases can also be harnessed as color- tuning sensors of intracellular pH. However, it is known that mammalian cells require temperatures higher than 36 °C, which red-shift the bioluminescence spectra of most firefly luciferases, decreasing their activities and the resolution of ratiometric pH analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!