Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high morbidity and mortality worldwide. Chemotherapy is recommended to patients with intermediate or advanced stage cancer. However, the conventional chemotherapy yields low desired response rates due to multidrug resistance, fast clearance rate, nonspecific delivery, severe side effects, low drug concentration in cancer cells, and so on. Nanoparticle-mediated targeted drug delivery system can surmount the aforementioned obstacles through enhanced permeability and retention effect and active targeting as a novel approach of therapeutics for HCC in recent years. The active targeting is triggered by ligands on the delivery system, which recognize with and internalize into hepatoma cells with high specificity and efficiency. This review focuses on the latest targeted delivery systems for HCC and summarizes the ligands that can enhance the capacity of active targeting, to provide some insight into future research in nanomedicine for HCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127222 | PMC |
http://dx.doi.org/10.2147/IJN.S115727 | DOI Listing |
J Neurosurg Pediatr
January 2025
2Neurology, UT Southwestern, Dallas, Texas.
Objective: Patients with drug-resistant epilepsy (DRE) are often referred for phase II evaluation with stereo-electroencephalography (SEEG) to identify a seizure onset zone for guiding definitive treatment. For patients without a focal seizure onset zone, neuromodulation targeting the thalamic nuclei-specifically the centromedian nucleus, anterior nucleus of the thalamus, and pulvinar nucleus-may be considered. Currently, thalamic nuclei selection is based mainly on the location of seizure onset, without a detailed evaluation of their network involvement.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Department of Neurology with Institute of Translational Neurology, University Hospital 4 Münster, Germany.
Background And Objectives: Levels of activated complement proteins in the CSF are increased in people with multiple sclerosis (MS) and are associated with clinical disease severity. In this study, we determined whether complement activation profiles track with quantitative MRI metrics and liquid biomarkers indicative of disease activity and progression.
Methods: Complement components and activation products (Factor H and I, C1q, C3, C4, C5, Ba, Bb, C3a, C4a, C5a, and sC5b-9) and liquid biomarkers (neurofilament light chain, glial fibrillary acidic protein [GFAP], CXCL-13, CXCL-9, and IL-12b) were quantified in the CSF of 112 patients with clinically isolated syndromes and 127 patients with MS; longitudinal MRIs according to a standardized protocol of the Swiss MS cohort were assessed.
Angew Chem Int Ed Engl
January 2025
Darmstadt University of Technology: Technische Universitat Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Strasse 4, 64287, Darmstadt, GERMANY.
Macrocycles are increasingly considered as promising modalities to target challenging intracellular proteins. However, strategies for transitioning from active linear starting points to improved macrocycles are still underdeveloped. Here we explored the derivatization of linkers as an approach for macrocycle optimization.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Chicago Division of the Physical Sciences, chemistry, UNITED STATES OF AMERICA.
Immune checkpoint blockade (ICB) has revolutionized the treatment of many cancers by leveraging the immune system to combat malignancies. However, its efficacy is limited by the immunosuppressive tumor microenvironment and other regulatory mechanisms of the immune system. Innate immune modulators (IIMs) provide potent immune activation to complement adaptive immune responses and help overcome resistance to ICB.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China.
d-Tagatose, a rare sugar endowed with a low-calorie property, superior taste quality, and probiotic functionality, has garnered significant research attention. However, the prevailing biological production methods relying on β-galactosidase and l-arabinose isomerase face challenges including high cost and suboptimal conversion efficiency. Consequently, it is of great research significance to find efficient alternative routes for d-tagatose synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!