Urban driven phenotypic changes: empirical observations and theoretical implications for eco-evolutionary feedback.

Philos Trans R Soc Lond B Biol Sci

Department of Urban Design and Planning, University of Washington, Seattle, WA 98195, USA.

Published: January 2017

Emerging evidence that cities drive micro-evolution raises the question of whether rapid urbanization of Earth might impact ecosystems by causing systemic changes in functional traits that regulate urban ecosystems' productivity and stability. Intraspecific trait variation-variation in organisms' morphological, physiological or behavioural characteristics stemming from genetic variability and phenotypic plasticity-has significant implications for ecological functions such as nutrient cycling and primary productivity. While it is well established that changes in ecological conditions can drive evolutionary change in species' traits that, in turn, can alter ecosystem function, an understanding of the reciprocal and simultaneous processes associated with such interactions is only beginning to emerge. In urban settings, the potential for rapid trait change may be exacerbated by multiple selection pressures operating simultaneously. This paper reviews evidence on mechanisms linking urban development patterns to rapid phenotypic changes, and differentiates phenotypic changes for which there is evidence of micro-evolution versus phenotypic changes which may represent plasticity. Studying how humans mediate phenotypic trait changes through urbanization could shed light on fundamental concepts in ecological and evolutionary theory. It can also contribute to our understanding of eco-evolutionary feedback and provide insights for maintaining ecosystem function over the long term.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5182425PMC
http://dx.doi.org/10.1098/rstb.2016.0029DOI Listing

Publication Analysis

Top Keywords

phenotypic changes
16
eco-evolutionary feedback
8
ecosystem function
8
changes
7
phenotypic
6
urban
4
urban driven
4
driven phenotypic
4
changes empirical
4
empirical observations
4

Similar Publications

The Use of Omics in Untangling the Effect of Lifestyle Factors in Pregnancy and Gestational Diabetes: A Systematic Review.

Diabetes Metab Res Rev

January 2025

Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.

Aim: To synthesise the evidence from clinical trials and observational studies using omics techniques to investigate the impact of diet and lifestyle factors on metabolite profile in pregnancy, and in the prevention and management of gestational diabetes mellitus (GDM).

Materials And Methods: A systematic literature search was performed using PubMed, Ovid, CINAHL, and Web of Science databases in October 2023 and updated in September 2024. Inclusion criteria were randomised controlled trials (RCT) or non-RCTs in pregnant women with or without GDM, that measured diet and lifestyle factors, and which applied post-transcriptional omics approaches.

View Article and Find Full Text PDF

Human parietal epithelial cells as Trojan horses in albumin overload.

Sci Rep

January 2025

Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.

Parietal Epithelial Cells (PECs) activation and proliferation are common to several distinct forms of glomerulopathies. Due to several stimuli, PECs can change to a progenitor (CD24 and CD133/2) or a pro-sclerotic (CD44) phenotype. In addition, PECs, which are constantly exposed to filtered albumin, are known to be involved in albumin internalization, but how this mechanism occurs is unknown.

View Article and Find Full Text PDF

Informing etiological heterogeneity of mild cognitive impairment and risk for progression to dementia with plasma p-tau217.

J Prev Alzheimers Dis

January 2025

1Florida Alzheimer's Disease Research Center, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.

Background: Mild cognitive impairment (MCI) is a clinical diagnosis representing early symptom changes with preserved functional independence. There are multiple potential etiologies of MCI. While often presumed to be related to Alzheimer's disease (AD), other neurodegenerative and non-neurodegenerative causes are common.

View Article and Find Full Text PDF

Update on Mast Cell Biology.

J Allergy Clin Immunol

January 2025

Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA. Electronic address:

Mast cells (MCs) are heterogeneous tissue-resident effector cells thought to play central roles in allergic inflammatory disease, yet the degree of heterogeneity and nature of these roles has remained elusive. In recent years, advances in tissue culture systems, pre-clinical mouse models, and the continued spread of single-cell RNA sequencing has greatly advanced our understanding of MC phenotypes in health and disease. These approaches have identified novel interactions of MC subsets with immune cells, neurons, and tissue structural cells, changing our understanding of how MCs both drive and help resolve tissue inflammation, reshape tissue microenvironments, and influence host behavior.

View Article and Find Full Text PDF

Purpose: To investigate the impact of blood pressure (BP) on rates of retinal nerve fiber layer (RNFL) thinning in glaucomatous eyes with focal ischemic (FI) versus generalized enlargement (GE) optic disc phenotypes.

Design: Prospective cohort study.

Participants: The study included 122 eyes from 101 patients diagnosed with primary open-angle glaucoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!