Structures of human mitofusin 1 provide insight into mitochondrial tethering.

J Cell Biol

National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China

Published: December 2016

Mitochondria undergo fusion and fission. The merging of outer mitochondrial membranes requires mitofusin (MFN), a dynamin-like GTPase. How exactly MFN mediates membrane fusion is poorly understood. Here, we determined crystal structures of a minimal GTPase domain (MGD) of human MFN1, including the predicted GTPase and the distal part of the C-terminal tail (CT). The structures revealed that a helix bundle (HB) formed by three helices extending from the GTPase and one extending from the CT closely attaches to the GTPase domain, resembling the configuration of bacterial dynamin-like protein. We show that the nucleotide-binding pocket is shallow and narrow, rendering weak hydrolysis and less dependence on magnesium ion, and that association of HB affects GTPase activity. MFN1 forms a dimer when GTP or GDP/BeF, but not GDP or other analogs, is added. In addition, clustering of vesicles containing membrane-anchored MGD requires continuous GTP hydrolysis. These results suggest that MFN tethers apposing membranes, likely through nucleotide-dependent dimerization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147005PMC
http://dx.doi.org/10.1083/jcb.201609019DOI Listing

Publication Analysis

Top Keywords

gtpase domain
8
gtpase
6
structures human
4
human mitofusin
4
mitofusin provide
4
provide insight
4
insight mitochondrial
4
mitochondrial tethering
4
tethering mitochondria
4
mitochondria undergo
4

Similar Publications

TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

J Cell Biol

April 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.

TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.

View Article and Find Full Text PDF

Unlabelled: SYNGAP1 is a key Ras-GAP protein enriched at excitatory synapses, with mutations causing intellectual disability and epilepsy in humans. Recent studies have revealed that in addition to its role as a negative regulator of G-protein signaling through its GAP enzymatic activity, SYNGAP1 plays an important structural role through its interaction with post-synaptic density proteins. Here, we reveal that intrinsic excitability deficits and seizure phenotypes in heterozygous Syngap1 knockout (KO) mice are differentially dependent on Syngap1 GAP activity.

View Article and Find Full Text PDF

A recurrent variant c.5126C>T in a Han-Chinese family with tuberous sclerosis complex.

Pak J Med Sci

January 2025

Lamei Yuan, MD, PhD, Health Management Center, the Third Xiangya Hospital, Disease Genome Research Center, Center for Experimental Medicine, the Third Xiangya Hospital, Research Center of Medical Experimental Technology, the Third Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China.

Objective: To identify the disease-causing variant in a family with tuberous sclerosis complex (TSC).

Methods: This study including a Han-Chinese pedigree recruited from the Third Xiangya Hospital, Central South University, Changsha, Hunan, China was conducted between February, 2019 and January, 2023. Detailed clinical examinations were performed on the proband and other family members of a Han-Chinese family with TSC.

View Article and Find Full Text PDF

In rice, leucine-rich repeat nucleotide-binding site (NLR) proteins are pivotal immune receptors in combating -triggered rice blast. However, the precise molecular mechanism underlying how NLR proteins regulate downstream signalling remains elusive due to the lack of knowledge regarding their direct downstream targets. The NLR protein Pigm-1 was cloned from Shuangkang 77009 in our laboratory.

View Article and Find Full Text PDF

Pathogenic variants in , encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo variant identified by whole exome sequencing performed more than 10 years after the patient's death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!