Selective Enhancement of Insulin Sensitivity in the Endothelium In Vivo Reveals a Novel Proatherosclerotic Signaling Loop.

Circ Res

From the Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., A.S., H.I., N.H., A.M.N.W., A.S., N.M., S.G., P. Shah, P. Sukumar, K.E.P., P.J.G., J.L., D.J.B., S.B.W., R.M.C., M.T.K.); Division of Medicine, Department of Metabolism & Experimental Therapeutics, University College London, United Kingdom (M.C.G.); and British Heart Foundation Centre of Research Excellence, King's College London, United Kingdom (A.M.S., C.X.C.S.).

Published: March 2017

Rationale: In the endothelium, insulin stimulates endothelial NO synthase (eNOS) to generate the antiatherosclerotic signaling radical NO. Insulin-resistant type 2 diabetes mellitus is associated with reduced NO availability and accelerated atherosclerosis. The effect of enhancing endothelial insulin sensitivity on NO availability is unclear.

Objective: To answer this question, we generated a mouse with endothelial cell (EC)-specific overexpression of the human insulin receptor (hIRECO) using the Tie2 promoter-enhancer.

Methods And Results: hIRECO demonstrated significant endothelial dysfunction measured by blunted endothelium-dependent vasorelaxation to acetylcholine, which was normalized by a specific Nox2 NADPH oxidase inhibitor. Insulin-stimulated phosphorylation of protein kinase B was increased in hIRECO EC as was Nox2 NADPH oxidase-dependent generation of superoxide, whereas insulin-stimulated and shear stress-stimulated eNOS activations were blunted. Phosphorylation at the inhibitory residue Y657 of eNOS and expression of proline-rich tyrosine kinase 2 that phosphorylates this residue were significantly higher in hIRECO EC. Inhibition of proline-rich tyrosine kinase 2 improved insulin-induced and shear stress-induced eNOS activation in hIRECO EC.

Conclusions: Enhancing insulin sensitivity specifically in EC leads to a paradoxical decline in endothelial function, mediated by increased tyrosine phosphorylation of eNOS and excess Nox2-derived superoxide. Increased EC insulin sensitivity leads to a proatherosclerotic imbalance between NO and superoxide. Inhibition of proline-rich tyrosine kinase 2 restores insulin-induced and shear stress-induced NO production. This study demonstrates for the first time that increased endothelial insulin sensitivity leads to a proatherosclerotic imbalance between NO and superoxide.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.116.309678DOI Listing

Publication Analysis

Top Keywords

insulin sensitivity
20
proline-rich tyrosine
12
tyrosine kinase
12
sensitivity leads
12
endothelial insulin
8
nox2 nadph
8
inhibition proline-rich
8
insulin-induced shear
8
shear stress-induced
8
leads proatherosclerotic
8

Similar Publications

Exercise activates autophagy and lysosome system in skeletal muscle, which are known to play an important role in metabolic adaptation. However, the mechanism of exercise-activated autophagy and lysosome system in obese insulin resistance remains covert. In this study, we investigated the role of exercise-induced activation of autophagy and lysosome system in improving glucose metabolism of skeletal muscle.

View Article and Find Full Text PDF

Objective: Subtypes of gestational diabetes mellitus (GDM) based on insulin sensitivity and secretion have been described. We addressed the hypothesis that GDM subtypes are differentially associated with newborn and child anthropometric and glycemic outcomes.

Research Design And Methods: Newborn and child (age 11-14 years) outcomes were examined in 7,970 and 4,160 mother-offspring dyads, respectively, who participated in the Hyperglycemia and Adverse Pregnancy Outcome Study (HAPO) and Follow-Up Study.

View Article and Find Full Text PDF

JMJD8 regulates adipocyte hypertrophy through the interaction with Perilipin 2.

Diabetes

January 2025

Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, US.

Adipocyte hypertrophy significantly contributes to insulin resistance and metabolic dysfunction. Our previous research established JMJD8 as a mediator of insulin resistance, noting its role in promoting adipocyte hypertrophy within an autonomous adipocyte context. Nevertheless, the precise mechanisms underlying this phenomenon remained elusive.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia due to insufficient insulin secretion or action. Contributing factors include genetic predisposition, obesity, family history, inactivity, and environmental risks. Type 2 diabetes mellitus (T2DM), the most common form, involves impaired insulin secretion by pancreatic β-cells, leading to insulin resistance.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) is among the modifiable risk factors for Alzheimer's disease (AD) and ranks among the leading chronic diseases globally. It is characterized by elevated blood glucose levels and insulin resistance, which over time may impair memory performance. More so, saliva appears to be a promising biomarker for the diagnosis of AD since conventional methods appear invasive and expensive in the country.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!