The development of deer antler follows a pattern similar to that described for mammalian endochondral ossification and has been proposed as a suitable model for studies of bone growth. We investigated seasonal changes in the plasma concentrations of 1,25-dihydroxyvitamin D [1,25-(OH)2D] and calcium and the activity of alkaline phosphatase in relation to the antler cycle during 1 yr in 4 captive roe deer and measured these biological parameters in 27 wild roe deer during their antler cycle. A significant elevation of 1,25-(OH)2D in peripheral plasma, with no parallel increase in the concentration of its precursor 25-hydroxyvitamin D, was observed to accompany the rapid growth phase of the antler cycle in captive (P less than 0.001) and wild (P less than 0.025) deer. During the same phase there was a gradient in levels of 1,25-(OH)2D in antler vs. jugular blood (P less than 0.01). In addition, velvet cells in culture proved to have the ability to convert 25-hydroxyvitamin D3 into a more polar derivative, which was indistinguishable from true 1,25-(OH)2D3 with regard to its chromatographic properties, its UV absorbance at 254 nm, and its ability to bind to the 1,25-(OH)2D3 receptors present in chick intestinal cytosol. These in vivo and in vitro results strongly suggest that local production of 1,25-(OH)2D by the antler cells does occur in vivo and may contribute to the increase in plasma 1,25-(OH)2D during bone growth.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo-125-5-2312DOI Listing

Publication Analysis

Top Keywords

bone growth
12
deer antler
12
antler cycle
12
vivo vitro
8
antler cells
8
cycle captive
8
roe deer
8
125-oh2d antler
8
antler
7
deer
5

Similar Publications

Objective: Spinal fusion is a commonly performed surgical procedure used to relieve pain, deformity, and instability of various spinal pathologies. Although there have been attempts to standardize spinal fusion assessment radiologically, there is currently no unified definition that also considers clinical symptomology. This review attempts to create a more holistic and standardized definition of spinal fusion.

View Article and Find Full Text PDF

One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them.

Blood

January 2025

Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.

Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is widely used as a bone graft. However, information on the head-to-head osteoinductivity and in vivo performance of micro- and nanosized natural and synthetic HA is still lacking. Here, we fabricated nanosized bovine HA (nanoBHA) by using a wet ball milling method and compared its in vitro and in vivo performance with microsized BHA, nanosized synthetic HA (nanoHA), and microsized synthetic HA (HA).

View Article and Find Full Text PDF

Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.

View Article and Find Full Text PDF

Variants in the SOX9 transactivation middle domain induce axial skeleton dysplasia and scoliosis.

Proc Natl Acad Sci U S A

January 2025

Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.

SOX9 is a crucial transcriptional regulator of cartilage development and homeostasis. Dysregulation of is associated with a wide spectrum of skeletal disorders, including campomelic dysplasia, acampomelic campomelic dysplasia, and scoliosis. Yet how variants contribute to the spectrum of axial skeletal disorders is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!