AI Article Synopsis

  • - A series of benzenesulfonamides featuring 1,3,4-trisubstituted-β-lactam structures were synthesized using sulfanilamide Schiff bases and ketenes via the Staudinger cycloaddition reaction.
  • - The newly created compounds were tested for their ability to inhibit four human isoforms of the carbonic anhydrase enzyme, which plays roles in various health issues, showing strong inhibitory effects across all isoforms.
  • - Notably, the lactam-sulfonamides exhibited excellent inhibition, particularly against hCA VII, an isoform linked to neuropathic pain, with inhibition constants (Ks) ranging from 0.68 to 9.1nM.

Article Abstract

A series of benzenesulfonamides incorporating 1,3,4-trisubstituted-β-lactam moieties was prepared from sulfanilamide Schiff bases and in situ obtained ketenes, by using the Staudinger cycloaddition reaction. The new compounds were assayed as inhibitors of four human isoforms of the metalloenzyme carbonic anhydrase (hCA, EC 4.2.1.1) involved in various physiological/pathological conditions, hCA I, II, IV and VII. Excellent inhibitory activity was observed against all these isoforms, as follows: hCA I, involved in some eye diseases was inhibited with Ks in the range of 7.3-917nM; hCA II, an antiglaucoma drug target, with Ks in the range of 0.76-163nM. hCA IV, an isoform involved in several pathological conditions such as glaucoma, retinitis pigmentosa and edema was potently inhibited by the lactam-sulfonamides, with Ks in the range of 0.53-51.0nM, whereas hCA VII, a recently validated anti-neuropathic pain target was the most inhibited isoform by these derivatives, with Ks in the range of 0.68-9.1nM. The structure-activity relationship for inhibiting these CAs with the new lactam-sulfonamides is discussed in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2016.11.027DOI Listing

Publication Analysis

Top Keywords

carbonic anhydrase
8
hca vii
8
hca
6
discovery 4-sulfamoyl-phenyl-β-lactams
4
4-sulfamoyl-phenyl-β-lactams class
4
class potent
4
potent carbonic
4
anhydrase isoforms
4
isoforms vii
4
vii inhibitors
4

Similar Publications

Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis.

View Article and Find Full Text PDF

Ancestral carbonic anhydrase with significantly enhanced stability and activity for CO capture and utilization.

Bioresour Technol

January 2025

Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China. Electronic address:

Carbonic anhydrases (CAs) has garnered increasing attention in carbon capture, utilization and storage (CCUS) due to their ecological friendliness. However, most of them suffer susceptibility to deactivation in harsh conditions. Herein, a reliable dataset was adopted for creating ancestral CAs through an optimized ancestral sequence reconstruction (ASR) method.

View Article and Find Full Text PDF

Recent Advances and Future Directions in Extracorporeal Carbon Dioxide Removal.

J Clin Med

December 2024

Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London SE1 9RT, UK.

Extracorporeal carbon dioxide removal (ECCOR) is an emerging technique designed to reduce carbon dioxide (CO) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCOR operates at lower blood flows (0.4-1.

View Article and Find Full Text PDF

Exploring the Inhibition of α-Carbonic Anhydrase by Sulfonamides: Insights into Potential Drug Targeting.

Int J Mol Sci

December 2024

Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.

, the causative agent of toxoplasmosis, is a protozoan parasite capable of infecting a wide range of hosts, posing significant health risks, particularly to immunocompromised individuals and congenital transmission. Current therapeutic options primarily target the active tachyzoite stage but are limited by issues such as toxicity and incomplete efficacy. As a result, there is an urgent need for alternative therapies that can selectively target parasite-specific mechanisms critical for metabolic processes and host-parasite interactions.

View Article and Find Full Text PDF

The green unicellular algae contains 12-13 carbonic anhydrases (CAs). For a long time, the two closely related α-CAs of the periplasmic membrane CAH1 and CAH2 were considered to be the CAs with the highest CO hydration activity. The recombinant protein α-CA CAH3 (rCAH3) from the thylakoid lumen obtained in the present study showed more than three times higher activity compared to CAH1 and more than 11 times higher compared to previous studies with rCAH3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!