The effects of pre-aeration and inoculation on solid-state anaerobic digestion of rice straw.

Bioresour Technol

Department of Biotechnology, Lund University, Naturvetarvägen 14, SE-223 62 Lund, Sweden; Nova Skantek Environmental Technology (Beijing) Co., Ltd, Beijing 100027, China.

Published: January 2017

Pre-aeration was investigated for enhancing biodegradation of recalcitrant lignocellulosic structure of rice straw under various low temperatures regimes (25, 35 and 45°C) and aeration durations (0, 2, 4, 6 and 8days). It was demonstrated aerated rice straw for 2days at 35°C resulted in highest hydrolytic efficiency and biochemical methane potential (BMP) (355.3±18.7mlCH/gVS). Furthermore, both methane yields and initiation speeds of the solid-state anaerobic digestion (SS-AD) were inversely proportional to substrate-to-inoculum ratios due to the accumulation of volatile fatty acids (VFAs) and poor mass transfer. The highest methane yield achieved under SS-AD was 234mlCH/gVS at TS of 16% which 72% of the BMP. Inoculum dilution with recycled water improved buffering capacity and mitigated accumulation of VFAs, resulting in an improved SS-AD performance. The combined pre-aeration and SS-AD was therefore established as a viable option to accelerate methane production for lignocellulosic biomass.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.11.104DOI Listing

Publication Analysis

Top Keywords

rice straw
12
solid-state anaerobic
8
anaerobic digestion
8
effects pre-aeration
4
pre-aeration inoculation
4
inoculation solid-state
4
digestion rice
4
straw pre-aeration
4
pre-aeration investigated
4
investigated enhancing
4

Similar Publications

The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.

View Article and Find Full Text PDF

Engineering the biosynthetic pathway of bacterial cellulose in rice to improve the performance of straw-derived paper.

Plant Commun

January 2025

Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding,China, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms ,Ministry of Agriculture and Rural Affairs, China. Electronic address:

View Article and Find Full Text PDF

The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).

View Article and Find Full Text PDF

Ensuring the mechanical performance of backfill materials while reducing cementation costs is a key challenge in mine backfill research. To address this, fiber materials such as polypropylene (PP) fiber and rice straw (RS) fiber have been incorporated into cement-based mixtures for mine backfilling. This study investigates the effects of PP and RS fibers on the mechanical properties, flow characteristics, and microstructure of Tailings and Wasted Stone Mixed Backfill (TWSMB).

View Article and Find Full Text PDF

Effects of Different Nitrogen Fertilizer Application Rates on Soil Microbial Structure in Paddy Soil When Combined with Rice Straw Return.

Microorganisms

January 2025

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.

Metagenomic sequencing of the microbial soil community was used to assess the effect of various nitrogen fertilizer treatments in combination with constant rice straw return to the soil in the tiller layer of Northeast China's black paddy soil used for rice production. Here, we investigated changes in the composition, diversity, and structure of soil microbial communities in the soil treated with four amounts of nitrogen fertilizers (53, 93, 133, and 173 kg/ha) applied to the soil under a constant straw return of 7500 kg/ha, with a control not receiving N. The relationships between soil microbial community structure and soil physical and chemical properties were determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!