A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF. | LitMetric

Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF.

Biomaterials

Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biochemical Engineering, University College London, London, WC1H 0AH, United Kingdom. Electronic address:

Published: February 2017

Angiogenic capacity of biomaterials is a key asset to drive vascular ingrowth during tissue repair and regeneration. Here we design a unique angiogenic microcarrier based on sol-gel derived mesoporous silica. The microspheres offer a potential angiogenic stimulator, Si ion, 'intrinsically' within the chemical structure. Furthermore, the highly mesoporous nature allows the loading and release of angiogenic growth factor 'extrinsically'. The Si ion is released from the microcarriers at therapeutic ranges (over a few ppm per day), which indeed up-regulates the expression of hypoxia inducing factor 1α (HIF1α) and stabilizes it by blocking HIF-prolyl hydroxylase 2 (PHD2) in HUVECs. This in turn activates the expression of a series of proangiogenic molecules, including bFGF, VEGF, and eNOS. VEGF is incorporated effectively within the mesopores of microcarriers and is then released continuously over a couple of weeks. The Si ion and VEGF released from the microcarriers synergistically stimulate endothelial cell functions, such as cell migration, chemotactic homing, and tubular networking. Furthermore, in vivo neo-blood vessel sprouting in chicken chorioallantoic membrane model is significantly promoted by the Si/VEGF releasing microcarriers. The current study demonstrates the synergized effects of Si ion and angiogenic growth factor through a biocompatible mesoporous microsphere delivery platform, and the concept provided here may open the door to a new co-delivery system of utilizing ions with growth factors for tissue repair and regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2016.11.053DOI Listing

Publication Analysis

Top Keywords

ion vegf
8
tissue repair
8
repair regeneration
8
angiogenic growth
8
growth factor
8
released microcarriers
8
microcarriers
5
ion
5
angiogenic
5
promoting angiogenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!