Introduction: We hypothesized that chest compressions located directly over the left ventricle (LV) would improve hemodynamics, including coronary perfusion pressure (CPP), and return of spontaneous circulation (ROSC) in a swine model of cardiac arrest.
Methods: Transthoracic echocardiography (echo) was used to mark the location of the aortic root and the center of the left ventricle on animals (n = 26) which were randomized to receive chest compressions in one of the two locations. After a period of ten minutes of ventricular fibrillation, basic life support (BLS) with mechanical cardiopulmonary resuscitation (CPR) was initiated and performed for ten minutes followed by advanced cardiac life support (ACLS) for an additional ten minutes. During BLS the area of maximal compression was verified using transesophageal echo. CPP and other hemodynamic variables were averaged every two minutes.
Results: Mean CPP was not significantly higher in the LV group during all time intervals of resuscitation; mean CPP was significantly higher in the LV group during the 12-14 minute interval of BLS and during minutes 22-30 of ACLS (p < 0.05). Aortic systolic and diastolic pressures, right atrial systolic pressures, and end-tidal CO2 (ETCO2) were higher in the LV group during all time intervals of resuscitation (p < 0.05). Nine of the left ventricle group (69%) achieved ROSC and survived to 60 minutes compared to zero of the aortic root group (p < 0.001).
Conclusions: In our swine model of cardiac arrest, chest compressions over the left ventricle improved hemodynamics and resulted in a greater proportion of animals with ROSC and survival to 60 minutes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10903127.2016.1241328 | DOI Listing |
Pediatr Cardiol
January 2025
Department of Cardiovascular Radiology & Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, 110029, India.
We sought to evaluate the intracardiac morphology and associated cardiovascular anomalies in patients with double inlet right ventricle (DIRV) on multidetector CT angiography. A retrospective search of our departmental database was conducted from January 2014 to January 2023 to identify patients with a diagnosis of DIRV on CT angiography. The intracardiac anatomy and associated cardiovascular abnormalities were systematically evaluated.
View Article and Find Full Text PDFHellenic J Cardiol
January 2025
Department of Echocardiography, Wuhan Asia Heart Hospital Affiliated Wuhan University of Science and Technology, Wuhan, P.R. China, 430022. Electronic address:
Indian Pacing Electrophysiol J
January 2025
Royal Jubilee Hospital, Vancouver Island Health Authority, British Columbia, Canada.
Transthyretin Cardiac amyloidosis (ATTR-CA) is an increasingly recognised cause of heart failure in our elderly patients with preserved ejection fraction. Patients with ATTR-CA who require permanent pacemaker implantation often have preserved ejection fraction and do not meet the clinical indication for cardiac resynchronization therapy (CRT). In these patients, left bundle branch area pacing (LBBAP) can be a reasonable option to maximise physiological activation of the left ventricle.
View Article and Find Full Text PDFJ Physiol
January 2025
Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA.
Robust preclinical models of asymmetric ventricular loading in late gestation reflecting conditions such as hypoplastic left heart syndrome are lacking. We characterized the morphometry and microvascular function of the hypoplastic left ventricle (LV) and remaining right ventricle (RV) in a sham-controlled late gestation fetal lamb model of impaired left ventricular inflow (ILVI). Singleton fetuses were instrumented at ∼120 days gestational age (dGA; term is ∼147 days) with vascular catheters, an aortic flow probe and a deflated left atrial balloon.
View Article and Find Full Text PDFMonaldi Arch Chest Dis
December 2024
Cardiology Division, Regina Montis Regalis Hospital, ASLCN1, Mondovì.
We presented a case of a 49-year-old presenting with atypical chest pain and hypertrophic phenotype cardiomyopathy without coronary artery disease. At cardiac magnetic resonance (CMR), the left ventricle was of normal volumes and preserved global ejection fraction with an asymmetric wall hypertrophy. The evaluation of native myocardial T1 has been calculated at an average global value of 924 ms, compatible with hypertrophic phenotype cardiomyopathy with reduced native T1 values as observed in Anderson-Fabry disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!