The role of osteolineage cells in regulating hematopoietic stem cell (HSC) regeneration following myelosuppression is not well understood. Here we show that deletion of the pro-apoptotic genes Bak and Bax in osterix (Osx, also known as Sp7 transcription factor 7)-expressing cells in mice promotes HSC regeneration and hematopoietic radioprotection following total body irradiation. These mice showed increased bone marrow (BM) levels of the protein dickkopf-1 (Dkk1), which was produced in Osx-expressing BM cells. Treatment of irradiated HSCs with Dkk1 in vitro increased the recovery of both long-term repopulating HSCs and progenitor cells, and systemic administration of Dkk1 to irradiated mice increased hematopoietic recovery and improved survival. Conversely, inducible deletion of one allele of Dkk1 in Osx-expressing cells in adult mice inhibited the recovery of BM stem and progenitor cells and of complete blood counts following irradiation. Dkk1 promoted hematopoietic regeneration via both direct effects on HSCs, in which treatment with Dkk1 decreased the levels of mitochondrial reactive oxygen species and suppressed senescence, and indirect effects on BM endothelial cells, in which treatment with Dkk1 induced epidermal growth factor (EGF) secretion. Accordingly, blockade of the EGF receptor partially abrogated Dkk1-mediated hematopoietic recovery. These data identify Dkk1 as a regulator of hematopoietic regeneration and demonstrate paracrine cross-talk between BM osteolineage cells and endothelial cells in regulating hematopoietic reconstitution following injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5592969PMC
http://dx.doi.org/10.1038/nm.4251DOI Listing

Publication Analysis

Top Keywords

hematopoietic regeneration
12
cells
9
hematopoietic
8
regeneration direct
8
osteolineage cells
8
cells regulating
8
regulating hematopoietic
8
hsc regeneration
8
mice increased
8
dkk1
8

Similar Publications

Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Regenerative properties of bone marrow mesenchymal stem cell derived exosomes in rotator cuff tears.

J Transl Med

January 2025

Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.

Rotator cuff injury (RCI), characterized by shoulder pain and restricted mobility, represents a subset of tendon-bone insertion injuries (TBI). In the majority of cases, surgical reconstruction of the affected tendons or ligaments is required to address the damage. However, numerous clinical failures have underscored the suboptimal outcomes associated with such procedures.

View Article and Find Full Text PDF

Dual-double stem cell therapy, which integrates mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), represents a cutting-edge approach in regenerative medicine, particularly for conditions such as ovarian decline, premature ovarian insufficiency (POI), and induced ovarian failure. This therapy leverages the unique properties of MSCs and HSCs, enhancing tissue repair, immune modulation, and overall regenerative outcomes. MSCs, known for their ability to differentiate into various cell types, provide a supportive microenvironment and secrete bioactive molecules that promote angiogenesis and reduce inflammation.

View Article and Find Full Text PDF

Spatial transcriptomic characterization of a Carnegie stage 7 human embryo.

Nat Cell Biol

January 2025

Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.

Gastrulation marks a pivotal stage in mammalian embryonic development, establishing the three germ layers and body axis through lineage diversification and morphogenetic movements. However, studying human gastrulating embryos is challenging due to limited access to early tissues. Here we show the use of spatial transcriptomics to analyse a fully intact Carnegie stage 7 human embryo at single-cell resolution, along with immunofluorescence validations in a second embryo.

View Article and Find Full Text PDF

The role of hospital pharmacists in supporting the appropriate and safe use of CGT/ATMPs: a scoping review of current insights.

BMC Health Serv Res

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.

Background: The role of hospital pharmacists in managing cell and gene therapy (CGT) and advanced therapy medicinal products (ATMPs) is gradually being recognized but the evidence about impact of their role has not been systematically reported.

Objective: This study was aimed to summarize the professional services provided by hospital pharmacists on managing CGT/ATMPs and the evidence about the effects on patient care, as well as to identify the perceptions about pharmacists assuming a role that supports the appropriate and safe use of CGT/ATMPs.

Methods: Literature from 4 electronic databases (PubMed, ScienceDirect, Web of Science, Scopus) were searched following PRISMA checklist to yield publications on the interventions provided by hospital pharmacists in the management of CGT/ATMPs dated since 1 January 2013 till 30 April 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!