A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rice Leaf Transcriptional Profiling Suggests a Functional Interplay Between Xanthomonas oryzae pv. oryzae Lipopolysaccharide and Extracellular Polysaccharide in Modulation of Defense Responses During Infection. | LitMetric

Treatment of rice leaves with isolated Xanthomonas oryzae pv. oryzae lipopolysaccharide (LPS) induces the production of callose deposits, reactive oxygen species, and enhanced resistance against subsequent bacterial infection. Expression profiling of X. oryzae pv. oryzae LPS-treated rice (Oryza sativa subsp. indica) leaves showed that genes involved in the biosynthetic pathways for lignins, phenylpropanoids, chorismate, phenylalanine, salicylic acid, and ethylene, as well as a number of pathogenesis-related proteins are up-regulated. Gene ontology categories like cell-wall organization, defense response, stress response, and protein phosphorylation/kinases were found to be upregulated, while genes involved in photosynthesis were down-regulated. Coinfiltration with xanthan gum, the xanthomonas extracellular polysaccharide (EPS), suppressed LPS-induced callose deposition. Gene expression analysis of rice leaves that are treated with an EPS-deficient mutant of X. oryzae pv. oryzae indicated that a number of defense-regulated functions are up-regulated during infection. These transcriptional responses are attenuated in rice leaves treated with an EPS-deficient mutant that is also deficient in the O-antigen component of LPS. Overall, these results suggest that the O-antigen component of X. oryzae pv. oryzae LPS induces rice defense responses during infection and that these are suppressed by bacterial EPS.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-08-16-0157-RDOI Listing

Publication Analysis

Top Keywords

oryzae oryzae
20
rice leaves
12
oryzae
10
xanthomonas oryzae
8
oryzae lipopolysaccharide
8
extracellular polysaccharide
8
defense responses
8
responses infection
8
lps induces
8
genes involved
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!