We performed a comparative study on the photoelectrochemical performance of LaTaON loaded with NiO, NiFeO, CoO and IrO as cocatalysts. Ni-based oxides lead to the highest improvement on the photoelectrochemical performance, while CoO and IrO also enhance the performance though to a lower extent, but they simultaneously introduce more pseudocapacitive current thus resulting in an inefficient utilization of the photo-generated holes. Repetitive voltage cycling between 1.0 V and 1.6 V transforms the NiO and NiFeO into oxyhydroxides known to possess higher catalytic activities. However, these oxyhydroxides lead to lower photoelectrochemical performance compared to the as-loaded oxides, most probably due to the decay of the passivation centers at the photoelectrode-cocatalyst interface. High catalytic activities cannot be achieved without sufficient passivation of surface recombination states. Despite that the photoelectrochemical performance of LaTaON can be improved by cocatalysts, the maximum achievable photocurrent density is still not comparable to that reported for other oxynitride compounds. Our study suggests that poor electronic conductivity or severe bulk recombination of the photo-generated electron-hole pairs are the main limiting factors for the photon-to-current conversion efficiency in LaTaON photoanodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp07253d | DOI Listing |
RSC Adv
January 2025
School of Electronic Engineering, Guangxi Key Laboratory of Multidimensional Information Fusion for Intelligent Vehicles, Guangxi University of Science and Technology Liuzhou 545000 China
This study presents a novel approach to enhance photoelectrochemical (PEC) water oxidation by integrating cobalt phthalocyanine (CoPc) with bismuth vanadate (BVO) a direct solvothermal method. The as-prepared BVO@CoPc photoanode demonstrated a photocurrent density of 4.0 mA cm at 1.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
Modulating the crystal phase of a photocatalyst significantly impacts its surface and photochemical properties, allowing for the adjustment of catalytic activity and selectivity, particularly in the electrooxidation reactions of biomass-derived chemicals. Herein, monoclinic and hexagonal phases of WO are employed as photoanodes for the photoelectrochemical conversion of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF). The monoclinic phase demonstrated exceptional performance in photoelectrocatalytic HMF oxidation, achieving remarkable photocurrent densities (1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea.
In this research, S-scheme heterojunction photocatalysts are prepared through the hybridization of nitrogen-rich g-CN with TiO (coded as TCN-(): as the weight ratio of TiO:g-CN). The photocatalytic potential of TCN-() is evaluated against benzene (1-5 ppm) across varying humidity levels using a dynamic flow packed-bed photocatalytic reactor. Among the prepared composites, TCN-(10) exhibits the highest synergy between g-CN and TiO at "" ratio of 10%, showing superior best benzene degradation performance (e.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:
Background: The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil and Environmental Engineering, Institute of Science Tokyo, 2-12-1, Meguro- Ku, Tokyo, 152-8552, Japan. Electronic address:
Intimately coupled photocatalytic biodegradation (ICPB) has been recently developed as an efficient wastewater treatment technique, particularly for removing persistent organic pollutants. However, photocatalyst/biofilm interaction in terms of photoelectron transfer and its effect on the overall performance of ICPB has not been explored. To investigate these points, interface-engineered composites of bismuth vanadate and reduced graphene oxide with low degree (BiVO/rGO-LC) and high degree of their contact (BiVO/rGO-HC) were fabricated and applied for ICPB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!