Ionic charge carrier formation and mobility, including the underlying conduction mechanisms, are investigated for phosphoric acid at water contents relevant for the acid's application as electrolyte in fuel cells. The high conductivity contribution from structural diffusion involving intermolecular proton transfer (∼97%) in neat phosphoric acid (HPO) passes through a maximum at this composition. Hydrogen bond network frustration (imbalance of the number of proton donors and acceptors), which is closely related to the appearance of structural diffusion, decreases with both elimination and addition of water. Structural diffusion is virtually disappearing for HPO·2HO, yet, the overall conductivity increases with increasing water content and reaches a maximum at a composition of HPO·5HO. The conductivity increase is a consequence of the progressive de-coupling of the diffusion of aqueous species from that of phosphate species and the strongly enhanced acidity of phosphoric acid at low water contents. High concentrations of protonated aqueous species with high diffusivity then lead to high conductivity contributions from vehicular transport. The increased water transport associated with the change in transport mechanism is suggested to have severe implications for fuel cell applications. At low water contents the conductivity contribution of structural diffusion is also reduced, but it is accompanied by conductivity contributions from a high concentration of multiply charged condensation products (e.g. HPO, HPO and HPO). The results underline the singularity of structure diffusion in neat phosphoric acid (HPO) and its sensitivity against any perturbation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp04855bDOI Listing

Publication Analysis

Top Keywords

phosphoric acid
16
structural diffusion
16
water contents
12
conduction mechanisms
8
high conductivity
8
conductivity contribution
8
contribution structural
8
neat phosphoric
8
acid hpo
8
maximum composition
8

Similar Publications

The objective of this study is to fabricate and develop hydroxypropyl methylcellulose (HPMC) hydrogel (HG)-based composite bone cements with incorporation of hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and with/without polymethylmethacrylate (PMMA) for vertebroplasty. For animal study, twenty female Wister rats (250-300 g, 12 weeks of age) were divided into four groups including a two non-ovariectomy (NOVX) groups and two ovariectomy (OVX)-induced osteoporosis groups. Two prepared biocomposites including HG/β-TCP/HA and HG/β-TCP/HA/PMMA were injected into the tibial defects of both OVX and NOVX rats for evaluating in vivo osteogenesis after 12 weeks.

View Article and Find Full Text PDF

A BMP-2 sustained-release scaffold accelerated bone regeneration in rats via the BMP-2 consistent activation maintained by a non-sulfate polysaccharide.

Biomed Mater

January 2025

School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China.

Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.

View Article and Find Full Text PDF

Background: /aims. Pseudoxanthoma Elasticum (PXE, OMIM 264800) is an autosomal, recessive, metabolic disorder characterized by progressive ectopic calcification in the skin, the vasculature and Bruch's membrane. Variants in the ABCC6 gene are associated with low plasma pyrophosphate (PPi) concentration.

View Article and Find Full Text PDF

Evaporation or freezing of water-rich fluids with dilute concentrations of dissolved salts can produce brines, as observed in closed basins on Earth and detected by remote sensing on icy bodies in the outer Solar System. The mineralogical evolution of these brines is well understood in regard to terrestrial environments, but poorly constrained for extraterrestrial systems owing to a lack of direct sampling. Here we report the occurrence of salt minerals in samples of the asteroid (101955) Bennu returned by the OSIRIS-REx mission.

View Article and Find Full Text PDF

Early phosphate changes as potential indicator of unreadiness for artificial feeding: a secondary analysis of the EPaNIC RCT.

Crit Care

January 2025

Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium.

Background: As compared to withholding parenteral nutrition (PN) until one week after intensive care unit (ICU) admission, Early PN prolonged ICU dependency in the EPaNIC randomized controlled trial (RCT). The Refeeding RCT showed improved outcome by temporary macronutrient restriction in ICU patients developing refeeding hypophosphatemia, defined as a phosphate decrease of > 0.16 mmol/L to levels < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!