Effects of ovalbumin protein nanoparticle vaccine size and coating on dendritic cell processing.

Biomater Sci

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA 30332, USA.

Published: January 2017

Nanoparticle vaccine delivery platforms are a promising technology for enhancing vaccine immunogenicity. Protein nanoparticles (PNPs), made entirely from antigen, have been shown to induce protective immune responses against influenza. However, the fundamental mechanisms by which PNPs enhance component protein immunogenicity are not understood. Here, we investigate the role of size and coating of model ovalbumin (OVA) PNPs on particle uptake and trafficking, as well as on inflammation and maturation factor expression in dendritic cells (DCs) in vitro. OVA PNPs enhance antigen uptake in a size-independent manner, and experience attenuated endosomal acidification as compared to soluble OVA. OVA PNPs also trigger Fc receptor upregulation. Expression of cytokines IL-1β and TNF-α were PNP size- and coating-dependent, with small (∼270 nm) nanoparticles triggering greater inflammatory cytokine production than large (∼560 nm) particles. IL-1β expression by DCs in response to PNP stimulation implies activation of the inflammasome, a pathway known to be activated by certain types of nanoparticulate adjuvants. The attenuated acidification and pro-inflammatory profile generated by PNPs in DCs demonstrate that physical biomaterial properties can modulate dendritic cell-mediated antigen processing and adjuvancy. In addition to nanoparticles' enhancement of DC antigen uptake, our work suggests that vaccine nanoparticle size and coating are uptake-independent modulators of immunogenicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5285395PMC
http://dx.doi.org/10.1039/c6bm00500dDOI Listing

Publication Analysis

Top Keywords

size coating
12
ova pnps
12
nanoparticle vaccine
8
pnps enhance
8
antigen uptake
8
pnps
6
effects ovalbumin
4
ovalbumin protein
4
protein nanoparticle
4
vaccine
4

Similar Publications

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

: Mirtazapine (MRZ) is a psychotropic drug prescribed to manage serious sorts of depression. By virtue of its extensive initial-pass metabolic process with poor water solubility, the ultimate bioavailability when taken orally is a mere 50%, necessitating repeated administration. The current inquiry intended to fabricate nose-to-brain chitosan-grafted cationic leciplexes of MRZ (CS-MRZ-LPX) to improve its pharmacokinetic weaknesses and boost the pharmacodynamics aspects.

View Article and Find Full Text PDF

Cellulose nanocrystals (CNCs) prepared by sulfuric acid hydrolysis were added to phthalocyanine green colour pastes with a surfactant to improve stability. The particle size, zeta potential, absorbance, and microstructure of the colour pastes were analyzed and characterized. The mechanism of CNCs to enhance the stability of hydrophobic phthalocyanine green in water was investigated.

View Article and Find Full Text PDF

Metasurface-Coated Liquid Microlens for Super Resolution Imaging.

Micromachines (Basel)

December 2024

State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710054, China.

Inspired by metasurfaces' control over light fields, this study created a liquid microlens coated with a layer of Au@TiO, Core-Shell nanospheres. Utilizing the surface plasmon resonance (SPR) effect of Au@TiO, Core-Shell nanospheres, and the formation of photonic nanojets (PNJs), this study aimed to extend the imaging system's cutoff frequency, improve microlens focusing, enhance the capture capability of evanescent waves, and utilize nanospheres to improve the conversion of evanescent waves into propagating waves, thus boosting the liquid microlens's super-resolution capabilities. The finite difference time domain (FDTD) method analyzed the impact of parameters including nanosphere size, microlens sample contact width, and droplet's initial contact angle on super-resolution imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!