Global warming increases the moisture holding capacity of the atmosphere and consequently the potential risks of extreme rainfall. Here we show that maximum hourly summer rainfall intensity has increased by about 11.2% on average, using continuous hourly gauge records for 1971-2013 from 721 weather stations in China. The corresponding event accumulated precipitation has on average increased by more than 10% aided by a small positive trend in events duration. Linear regression of the 95 percentile daily precipitation intensity with daily mean surface air temperature shows a negative scaling of -9.6%/K, in contrast to a positive scaling of 10.6%/K for hourly data. This is made up of a positive scaling below the summer mean temperature and a negative scaling above. Using seasonal means instead of daily means, we find a consistent scaling rate for the region of 6.7-7%/K for both daily and hourly precipitation extremes, about 10% higher than the regional Clausius-Clapeyron scaling of 6.1%/K based on a mean temperature of 24.6 °C. With up to 18% further increase in extreme precipitation under continuing global warming towards the IPCC's 1.5 °C target, risks of flash floods will exacerbate on top of the current incapability of urban drainage systems in a rapidly urbanizing China.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5137019PMC
http://dx.doi.org/10.1038/srep38506DOI Listing

Publication Analysis

Top Keywords

increase extreme
8
summer rainfall
8
rainfall intensity
8
global warming
8
temperature negative
8
negative scaling
8
positive scaling
8
scaling
6
robust increase
4
extreme summer
4

Similar Publications

Background: PATHFINDER was a prospective cohort study of multicancer early detection (MCED) testing in an outpatient ambulatory population. The aim of this study is to report the patient-reported outcomes (PROs) collected as secondary and exploratory measures in the PATHFINDER study.

Methods: PATHFINDER is a prospective, multicentre, cohort study that enrolled existing healthy ambulatory outpatients at seven health networks in the USA, including hospitals, academic medical centres, and integrated health systems.

View Article and Find Full Text PDF

Climate warming and frequent incidents of extreme high temperatures are serious global concerns. Heat stress induced by high temperature has many adverse effects on animal physiology, especially in aquatic poikilotherms. Chinese mitten crab (Eriocheir sinensis) is sensitive to high temperatures, this study evaluated the harmful effects of heat stress on the neurotoxicity, intestinal health, microbial diversity, and metabolite profiles.

View Article and Find Full Text PDF

The (in)dependence of single-cell data inferences on model constructs.

Forensic Sci Int Genet

January 2025

Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science,  Rutgers University, Camden, NJ 08102, USA.

Recent developments in single-cell analysis have revolutionized basic research and have garnered the attention of the forensic domain. Though single-cell analysis is not new to forensics, the ways in which these data can be generated and interpreted are. Modern interpretation strategies report likelihood ratios that rely on a model of the world that is a simplification of it.

View Article and Find Full Text PDF

is a putative producer of polyunsaturated fatty acids in the gut soil of the composting earthworm .

Appl Environ Microbiol

January 2025

Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.

Polyunsaturated fatty acids (PUFAs) play a crucial role in aiding bacteria to adapt to extreme and stressful environments. While there is a well-established understanding of their production, accrual, and transfer within marine ecosystems, knowledge about terrestrial environments remains limited. Investigation of the intestinal microbiome of earthworms has illuminated the presence of PUFAs presumably of microbial origin, which contrasts with the surrounding soil.

View Article and Find Full Text PDF

One notable consequence of climate change is an increase in the frequency, scale and severity of heat waves. Heat waves in terrestrial habitats (atmospheric heat waves, AHW) and marine habitats (marine heat waves, MHW) have received considerable attention as environmental forces that impact organisms, populations and whole ecosystems. Only one ecosystem, the intertidal zone, experiences both MHWs and AHWs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!