The painting Rebecca and Eliezer at the Well, which hangs in the Fitzwilliam Museum, Cambridge, UK, is possibly one of the last figure painting executed by Nicolas Poussin at the very end of his life and is usually dated to the early 1660s. In this perspective special feature, Philippe Walter, Alain Brunelle and colleagues give new insights on the artist's working methods by a careful stateof-the-art imaging ToF-SIMS study of one sample taken on the edge of the painting. This approach allowed for the identification of the pigments used in the painting, their nature and components and those of the ground and preparatory layers, with the identification of the binder(s) and possible other additions of organic materials such as glue. This study paves the way to a wider use of ToF-SIMS for the analysis of ancient cultural heritage artefacts. Dr. Walter is the Director of the Molecular and Structural Archeology Laboratory (Université Pierre et Marie Curie, Paris, France). Dr. Brunelle is Head of the Mass Spectrometry Laboratory at the Institut de Chimie des Substances Naturelles (CNRS, Gif-sur-Yvette, France). Their long standing collaboration has led to several seminal publications on the analysis of ancient artefacts by mass spectrometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jms.3692 | DOI Listing |
Phytochem Anal
January 2025
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
Objective: This study aimed to qualitatively study the main chemical components of apple peel in APORT, Kazakhstan, by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and to compare the components of apple peels with different provenances.
Methods: An ACQUITY UPLC HSS T3 (100 mm × 2.1 mm, 1.
Angew Chem Int Ed Engl
January 2025
Nanjing University, School of Chemistry and Chemical Engineering, No. 163 Xianlin Road, 210023, Nanjing, CHINA.
Hydroxylation, an extensive post-translational modification on proline, is critical for the modulation of protein structures, further dominating their functions in life systems. However, current mass spectrometry-based identification, could hardly distinguish hydroxylation from neighboring oxidation due to the same mass shifts, as well as challenges posed by low abundance and exogenous oxidation during sample preparation. To address these, an engineered nanopore was designed, capable of discriminating single hydroxyl group, to achieve the identification of proline hydroxylation on individual native peptides directly in the mixture.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
May 2025
Technology Center of Qingdao Customs, Qingdao, China.
The presence of pesticide residues in textiles poses a risk to human health. We established a robust and high-throughput liquid chromatography-tandem mass spectrometry method for the determination of 115 pesticide residues in textiles. In this study, we evaluated high-performance liquid chromatography-tandem mass spectrometry conditions and sample extraction methods, including separation performance of different columns, mass conditions, extraction solvent, and extraction time.
View Article and Find Full Text PDFChem Biodivers
January 2025
INRGREF: Institut National de Recherche en Genie Rural Eaux et Forets, Forestry, Tunis, Tunis, TUNISIA.
Leaf essential oils (EOs) of seven Eucalyptus species from southern Tunisia (E. gracilis, E. lesouefii, E.
View Article and Find Full Text PDFProtein Sci
February 2025
Amherst College, Amherst, Massachusetts, USA.
Hydrogen exchange mass spectrometry (HXMS) is a powerful tool to understand protein folding pathways and energetics. However, HXMS experiments to date have used exchange conditions termed EX1 or EX2 which limit the information that can be gained compared to the more general EXX exchange regime. If EXX behavior could be understood and analyzed, a single HXMS timecourse on an intact protein could fully map its folding landscape without requiring denaturation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!