A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rapid Prototyping of Inspired Gas Delivery System for Pulmonary MRI Research. | LitMetric

Rapid Prototyping of Inspired Gas Delivery System for Pulmonary MRI Research.

3D Print Addit Manuf

Department of Medicine, University of California, San Diego, La Jolla, California.; Department of Radiology, University of California, San Diego, La Jolla, California.

Published: December 2015

Specific ventilation imaging (SVI) is a noninvasive magnetic resonance imaging (MRI)-based method for determining the regional distribution of inspired air in the lungs, useful for the assessment of pulmonary function in medical research. This technique works by monitoring the rate of magnetic resonance signal change in response to a series of imposed step changes in inspired oxygen concentration. The current SVI technique requires a complex system of tubes, valves, and electronics that are used to supply and rapidly switch inspired gases while subjects are imaged, which makes the technique difficult to translate into the clinical setting. This report discusses the design and implementation of custom three-dimensional (3D) printed hardware that greatly simplifies SVI measurement of lung function. Several hardware prototypes were modeled using computer-aided design software and printed for evaluation. After finalization of the design, the new delivery system was evaluated based on O and N concentration step responses and validated against the current SVI protocol. The design performed rapid switching of supplied gas within 250 ms and consistently supplied the desired concentration of O during operation. It features a reduction in the number of commercial hardware components, from five to one, and a reduction in the number of gas lines between the operator's room and the scanner room, from four to one, as well as a substantially reduced preparation time from 25 to 5 min. 3D printing is well suited to the design of inexpensive custom MRI compatible hardware, making it particularly useful in imaging-based research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981153PMC
http://dx.doi.org/10.1089/3dp.2015.0027DOI Listing

Publication Analysis

Top Keywords

delivery system
8
magnetic resonance
8
current svi
8
reduction number
8
design
5
rapid prototyping
4
inspired
4
prototyping inspired
4
inspired gas
4
gas delivery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!