Experimental and epidemiologic investigations suggest that certain pesticides may alter sex steroid hormone synthesis, metabolism or regulation, and the risk of hormone-related cancers. Here, we evaluated whether single-nucleotide polymorphisms (SNPs) involved in hormone homeostasis alter the effect of pesticide exposure on prostate cancer risk. We evaluated pesticide-SNP interactions between 39 pesticides and SNPs with respect to prostate cancer among 776 cases and 1,444 controls nested in the Agricultural Health Study cohort. In these interactions, we included candidate SNPs involved in hormone synthesis, metabolism or regulation ( = 1,100), as well as SNPs associated with circulating sex steroid concentrations, as identified by genome-wide association studies ( = 17). Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. We translated -values for interaction into -values, which reflected the false discovery rate, to account for multiple comparisons. We observed a significant interaction, which was robust to multiple comparison testing, between the herbicide dicamba and rs8192166 in the testosterone metabolizing gene (-interaction = 4.0 × 10; -value = 0.03), such that men with two copies of the wild-type genotype CC had a reduced risk of prostate cancer associated with low use of dicamba (OR = 0.62 95% CI: 0.41, 0.93) and high use of dicamba (OR = 0.44, 95% CI: 0.29, 0.68), compared to those who reported no use of dicamba; in contrast, there was no significant association between dicamba and prostate cancer among those carrying one or two copies of the variant T allele at rs8192166. In addition, interactions between two organophosphate insecticides and SNPs related to estradiol metabolism were observed to result in an increased risk of prostate cancer. While replication is needed, these data suggest both agonistic and antagonistic effects on circulating hormones, due to the combination of exposure to pesticides and genetic susceptibility, may impact prostate cancer risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5116569PMC
http://dx.doi.org/10.3389/fonc.2016.00237DOI Listing

Publication Analysis

Top Keywords

prostate cancer
28
sex steroid
12
risk prostate
12
steroid hormone
8
single-nucleotide polymorphisms
8
agricultural health
8
health study
8
hormone synthesis
8
synthesis metabolism
8
metabolism regulation
8

Similar Publications

Neuroendocrine neoplasms (NENs) encompass a diverse set of malignancies with limited precision therapy options. Recently, therapies targeting DLL3 have shown clinical efficacy in aggressive NENs, including small cell lung cancers and neuroendocrine prostate cancers. Given the continued development and expansion of DLL3-targeted therapies, we sought to characterize the expression of DLL3 and identify its clinical and molecular correlates across diverse neuroendocrine and non-neuroendocrine cancers.

View Article and Find Full Text PDF

Objective: A new library of Thiazolidine-2,4-dione-biphenyl Derivatives derivatives (10a-j) was designed and synthesized. All compounds were characterized by spectral data. Further, these were evaluated for their in vitro anticancer activity.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the influence of p16 immunohistochemical expression on the biochemical recurrence rate of pT2-pT3 prostate cancer.

Materials And Methods: A total of 488 pT2-pT3 stage prostate adenocarcinomas undergoing radical prostatectomy were included in this study. Following a review of Gleason classification and retrieval of sociodemographic and clinicopathological data, as well as the date of last consultation and biochemical recurrence, immunohistochemistry for p16 was performed.

View Article and Find Full Text PDF

Among the known nuclear exportins, CRM1 is the most studied prototype. Dysregulation of CRM1 occurs in many cancers, hence, understanding the role of CRM1 in cancer can help in developing synergistic therapeutics. The study investigates how CRM1 affects prostate cancer growth and survival.

View Article and Find Full Text PDF

Clinical Trials in Cancer Theranostics with Potential Near-Term Impact on Clinical Practice.

Br J Radiol

January 2025

Division of Nuclear Medicine and Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Theranostics has its roots with the first radioiodine therapy for thyroid diseases in about 80 years ago. More recently the field has experienced a remarkable renascence with the regulatory approval of paired imaging and radiopharmaceutical therapy agents in gastroenteropancreatic neuroendocrine tumors and metastatic castration-resistant prostate cancer that are now employed in routine clinical practice. The momentum is strong for identification and testing of new theranostic agents for use in various cancers and finding new clinical incications of the available agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!