AI Article Synopsis

  • Understanding the relationship between ingested plant material and its associated microbiome is crucial for improving nutrient efficiency in ruminants, with a focus on how bacteria colonize plants over time.
  • The study uses metagenomic shotgun sequencing and mid-infrared spectroscopy to analyze the diversity and function of rumen microbiota at two colonization stages: primary (up to 4 hours) and secondary (after 4 hours).
  • Results indicate that specific bacterial genera dominate the microbiome at both stages, with increased activity in amino acid, carbohydrate, and lipid metabolism during secondary colonization, highlighting changes in plant chemistry that drive these dynamics.

Article Abstract

Understanding the relationship between ingested plant material and the attached microbiome is essential for developing methodologies to improve ruminant nutrient use efficiency. We have previously shown that perennial ryegrass (PRG) rumen bacterial colonization events follow a primary (up to 4 h) and secondary (after 4 h) pattern based on the differences in diversity of the attached bacteria. In this study, we investigated temporal niche specialization of primary and secondary populations of attached rumen microbiota using metagenomic shotgun sequencing as well as monitoring changes in the plant chemistry using mid-infrared spectroscopy (FT-IR). Metagenomic Rapid Annotation using Subsystem Technology (MG-RAST) taxonomical analysis of shotgun metagenomic sequences showed that the genera , and dominated the attached microbiome irrespective of time. MG-RAST also showed that , and rDNA increased in read abundance during secondary colonization, whilst decreased in read abundance. MG-RAST Clusters of Orthologous Groups (COG) functional analysis also showed that the primary function of the attached microbiome was categorized broadly within "metabolism;" predominantly amino acid, carbohydrate, and lipid metabolism and transport. Most sequence read abundances (51.6, 43.8, and 50.0% of COG families pertaining to amino acid, carbohydrate and lipid metabolism, respectively) within these categories were higher in abundance during secondary colonization. Kyoto encyclopedia of genes and genomes (KEGG) pathways analysis confirmed that the PRG-attached microbiota present at 1 and 4 h of rumen incubation possess a similar functional capacity, with only a few pathways being uniquely found in only one incubation time point only. FT-IR data for the plant residues also showed that the main changes in plant chemistry between primary and secondary colonization was due to increased carbohydrate, amino acid, and lipid metabolism. This study confirmed primary and secondary colonization events and supported the hypothesis that functional changes occurred as a consequence of taxonomical changes. Sequences within the carbohydrate metabolism COG families contained only 3.2% of cellulose activities, on average across both incubation times (1 and 4 h), suggesting that degradation of the plant cell walls may be a key rate-limiting factor in ensuring the bioavailability of intra-plant nutrients in a timely manner to the microbes and ultimately the animal. This suggests that a future focus for improving ruminant nutrient use efficiency should be altering the recalcitrant plant cell wall components and/or improving the cellulolytic capacity of the rumen microbiota.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5114307PMC
http://dx.doi.org/10.3389/fmicb.2016.01854DOI Listing

Publication Analysis

Top Keywords

primary secondary
16
secondary colonization
16
attached microbiome
12
amino acid
12
lipid metabolism
12
perennial ryegrass
8
ruminant nutrient
8
nutrient efficiency
8
colonization events
8
rumen microbiota
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!