Catalytic Performance of a New 1D Cu(II) Coordination Polymer {Cu(NO₃)(H₂O)}(HTae)(4,4'-Bpy) for Knoevenagel Condensation.

Molecules

Department Mineralogía y Petrología, Universidad del País Vasco, UPV/EHU, Sarriena s/n, 48940 Leioa, Spain.

Published: December 2016

The {Cu(NO₃)(H₂O)}(HTae)(4,4'-Bpy) (H₂Tae = 1,1,2,2-tetraacetylethane, 4,4'-Bpy = 4,4'-Dipyridyl) 1D coordination polymer has been obtained by slow evaporation. The crystal structure consists of parallel and oblique {Cu(HTae)(4,4'-Bpy)} zig-zag metal-organic chains stacked along the [100] crystallographic direction. Copper(II) ions are in octahedral coordination environment linked to two nitrogen atoms of two bridging 4,4'-Bpy and to two oxygen atoms of one HTae molecule in the equatorial plane. The occupation of the axial positions varies from one copper atom to another, with different combinations of water molecules and nitrate anions, giving rise to a commensurate super-structure. By means of the thermal removal of water molecules, copper coordinatively unsaturated centres are obtained. These open metal sites could act as Lewis acid active sites in several heterogeneous catalytic reactions. The dehydrated compound, , has been tested as a heterogeneous recoverable catalyst for Knoevenagel condensation reactions. The catalyst is active and heterogeneous for the condensation of aldehydes with malononitrile at 60 °C using a molar ratio catalyst:substrate of 3 % and toluene as solvent. The catalyst suffers a partial loss of activity when reusing it, but can be reused at least four times.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272964PMC
http://dx.doi.org/10.3390/molecules21121651DOI Listing

Publication Analysis

Top Keywords

coordination polymer
8
knoevenagel condensation
8
water molecules
8
catalytic performance
4
performance cuii
4
cuii coordination
4
polymer {cuno₃h₂o}htae44'-bpy
4
{cuno₃h₂o}htae44'-bpy knoevenagel
4
condensation {cuno₃h₂o}htae44'-bpy
4
{cuno₃h₂o}htae44'-bpy h₂tae
4

Similar Publications

Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.

View Article and Find Full Text PDF

We present a strategy for enhancing Li conduction in block copolymer electrolytes by introducing trace amounts of Li salts into polystyrene--poly(ethylene oxide) (PS--PEO), wherein Li ions preferentially coordinate with the -OH end groups of the PEO chains, resulting in the formation of double primitive cubic (3̅) structures. Compared with TFSI anions in Li salts, smaller anions (PF and BF) could facilitate ion localization more effectively, expanding the salt concentration range for developing stable 3̅ structures. The 3̅ structures formed in PS--PEOs doped with LiBF at = 0.

View Article and Find Full Text PDF

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) with mechanical strength and reduced flammability may also enable next-generation Li batteries with higher energy densities. However, conventional SPEs have fundamental limitations in terms of Li conductivity. While an imidazole functionalized polymer (PMS-Im) has been previously shown to have ionic conductivity related to the imidazole-Li coordination, herein we demonstrate that quaternization of this polymer to form an analogous imidazolium functionalized polymer (PMS-Im) more efficiently solvates lithium salts and plasticizes the polymer.

View Article and Find Full Text PDF

Developing efficient path integral (PI) methods for atomistic simulations of vibrational spectra in heterogeneous condensed phases and interfaces has long been a challenging task. Here, we present the h-CMD method, short for hybrid centroid molecular dynamics, which combines the recently introduced fast quasi-CMD (f-QCMD) method with fast CMD (f-CMD). In this scheme, molecules that are believed to suffer more seriously from the curvature problem of CMD, e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!