Associations between the CNTNAP2 gene, dorsolateral prefrontal cortex, and cognitive performance on the Stroop task.

Neuroscience

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China; Institute of Developmental Psychology, Beijing Normal University, Beijing, China.

Published: February 2017

The CNTNAP2 (contactin-associated protein-like 2) gene, highly expressed in the human prefrontal cortex, has been linked with autism and language impairment. Potential relationships between CNTNAP2, dorsolateral prefrontal cortex (DLPFC), and cognition have been suggested by previous clinical studies, but have not been directly examined in the same study. The current study collected structural MRI, genetic, and behavioral data in 317 healthy Chinese adults, and examined associations between CNTNAP2 variants, DLPFC, and cognitive performance (measured by the Stroop task). After controlling for intracranial volume, sex, and age, the CNTNAP2 genetic polymorphism at SNP rs7809486 had the strongest association with bilateral DLPFC volume (p=0.00015 and 0.00014 for left and right DLPFC volumes, respectively), with GG homozygotes having greater bilateral DLPFC volumes and surface areas than the other genotypes. Furthermore, TT homozygotes of CNTNAP2 rs4726946 (a nearby SNP that had moderate linkage disequilibrium with rs7809486) had greater left DLPFC volume and surface area, and better cognitive performance than the other genotypes. Subjects with greater left DLPFC surface area had better cognitive performance. Importantly, the left DLPFC surface area mediated the association between the CNTNAP2 rs4726946 genotype and cognitive performance. This study provides the first evidence for associations among the CNTNAP2 gene, left DLPFC structure, and cognitive control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2016.11.021DOI Listing

Publication Analysis

Top Keywords

cognitive performance
20
left dlpfc
20
associations cntnap2
12
prefrontal cortex
12
surface area
12
dlpfc
9
cntnap2 gene
8
dorsolateral prefrontal
8
stroop task
8
bilateral dlpfc
8

Similar Publications

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.

View Article and Find Full Text PDF

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.

View Article and Find Full Text PDF

Purpose: This cross-sectional study aimed to clarify the relationship between dysphagia and social isolation among community-dwelling older people.

Methods: The study participants were 238 community-dwelling older people (168 women; mean age, 74.0 ± 5.

View Article and Find Full Text PDF

Mapping the neural substrate of high dual-task gait cost in older adults across the cognitive spectrum.

Brain Struct Funct

January 2025

Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, 1151 Richmond Street, North London, ON, N6A 5C1, Canada.

The dual task cost of gait (DTC) is an accessible and cost-effective test that can help identify individuals with cognitive decline and dementia. However, its neural substrate has not been widely described. This study aims to investigate the neural substrate of the high DTC in older adults across the spectrum of cognitive decline.

View Article and Find Full Text PDF

A preliminary exploration of establishing a mice model of hypoxic training.

Sci Rep

January 2025

Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.

Altitude training has been widely adopted. This study aimed to establish a mice model to determine the time point for achieving the best endurance at the lowland. C57BL/6 and BALB/c male mice were used to establish a mice model of hypoxic training with normoxic training mice, hypoxic mice, and normoxic mice as controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!