Chronic kidney disease accelerates cognitive impairment in a mouse model of Alzheimer's disease, through angiotensin II.

Exp Gerontol

Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan. Electronic address:

Published: January 2017

Epidemiological studies suggest that chronic kidney disease (CKD) is a significant risk factor in the development of cognitive decline. However, the exact role of CKD in cognitive impairment or dementia is unclear. This work was performed to examine the potential impact of CKD on cognitive impairment in Alzheimer's disease (AD), focusing on angiotensin II. (1) CKD was induced in 5XFAD mice, an AD model mouse, and wild-type mice by feeding an adenine-containing diet and the effect on cognitive function was compared between both strains. There was no significant difference regarding the severity of CKD induced by adenine between the strains. In 5XFAD mice, the CKD group exhibited significant cognitive impairment while the control group (control diet-fed group) did not, as evidenced by a passive avoidance test. On the other hand, in wild-type mice, neither the CKD group nor the control group showed cognitive impairment. Thus, CKD itself appears to accelerate cognitive impairment in AD mice. (2) We also examined the effect of olmesartan, an angiotensin II receptor blocker, on 5XFAD mice with CKD to elucidate the potential involvement of angiotensin II. As evidenced by the findings of the water maze test, olmesartan treatment significantly ameliorated the impairment of spatial learning and memory function induced by CKD in 5XFAD mice. Olmesartan treatment significantly ameliorated blood-brain barrier (BBB) disruption induced by CKD in 5XFAD mice. Furthermore, olmesartan reduced hippocampal oxidative stress in 5XFAD with CKD to similar levels to the control group of 5XFAD fed standard diet. Hence, the amelioration of CKD-induced cognitive impairment in 5XFAD mice by olmesartan appears to be mediated by the suppression of BBB disruption or oxidative stress. In conclusion, we obtained the evidence suggesting that CKD itself accelerates cognitive impairment in AD mice, through angiotensin II. Thus, our work provides a novel insight into the underlying mechanism of the link between CKD and AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2016.11.012DOI Listing

Publication Analysis

Top Keywords

cognitive impairment
32
5xfad mice
24
ckd
14
mice ckd
12
control group
12
mice olmesartan
12
cognitive
10
mice
10
impairment
9
chronic kidney
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!