Hereditary fever syndromes (HFS) include a group of disorders characterized by recurrent self-limited episodes of fever accompanied by inflammatory manifestations occurring in the absence of infection or autoimmune reaction. Advances in the genetics of HFS have led to the identification of new gene families and pathways involved in the regulation of inflammation and innate immunity. The key role of several cytokine networks in the pathogenesis of HFS has been underlined by several groups, and supported by the rapid response of patients to targeted cytokine blocking therapies. This can be due to the direct effect of cytokine overproduction or to an absence of receptor antagonist resulting in dysbalance of downstream pro- and anti-inflammatory cytokine networks. The aim of this study was to present an overview and to discuss the major concepts regarding the cellular and molecular immunology of HFS, with a particular focus on their specific cytokine signatures and physiopathological implications. Based on their molecular and cellular mechanisms, HFS have been classified into intrinsic and extrinsic IL-1β activation disorders or inflammasomopathies, and protein misfolding disorders. This review integrates all recent data in an updated classification of HFS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cytogfr.2016.11.001 | DOI Listing |
Front Immunol
January 2025
Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.
View Article and Find Full Text PDFACS Omega
January 2025
School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
In phage display technology, exogenous DNA is inserted into the phage genome, which generates a fusion protein with the phage coat protein, facilitates expression and promotes biological activity. This approach is primarily used to screen antibody libraries owing to its high library capacity and fast technical cycle; additionally, various types of genetically altered antibodies can be easily produced. In this study, we fused the pIII structural protein of the M13K07 phage with a scFv created by connecting the VH and VL domains of an anti-IFN-γ antibody.
View Article and Find Full Text PDFNat Commun
January 2025
Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.
View Article and Find Full Text PDFEBioMedicine
January 2025
Institute of Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany. Electronic address:
Background: Aging increases disease susceptibility and reduces vaccine responsiveness, highlighting the need to better understand the aging immune system and its clinical associations. Studying the human immune system, however, remains challenging due to its complexity and significant inter-individual variability.
Methods: We conducted an immune profiling study of 550 elderly participants (≥60 years) and 100 young controls (20-40 years) from the RESIST Senior Individuals (SI) cohort.
Viruses
January 2025
Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!