A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular Basis of Alarm Pheromone Detection in Aphids. | LitMetric

Molecular Basis of Alarm Pheromone Detection in Aphids.

Curr Biol

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Published: January 2017

The sesquiterpene (E)-β-farnesene (EBF) is the alarm pheromone for many species of aphids [1]. When released from aphids attacked by parasitoids or predators, it alerts nearby conspecifics to escape by walking away and dropping off the host plant [2, 3]. The reception of alarm pheromone in aphids is accomplished through a highly sensitive chemosensory system. Although olfaction-related gene families including odorant receptors (ORs) and odorant-binding proteins (OBPs) have recently been identified from aphid genomes [4-6], the cellular and molecular mechanisms of EBF reception are still largely unknown. Here we demonstrate that ApisOR5, a member of the large superfamily of odorant receptors, is expressed in large placoid sensillum neurons on the sixth antennal segment and confers response to EBF when co-expressed with Orco, an obligate odorant receptor co-receptor, in parallel heterologous expression systems. In addition, the repellent behavior of Acyrthosiphon pisum to EBF disappears after knocking down ApisOR5 by RNAi as well as two A. pisum odorant-binding proteins known to bind EBF (ApisOBP3 and ApisOBP7). Furthermore, other odorants that can also activate ApisOR5, such as geranyl acetate, significantly repel A. pisum, as does EBF. Taken together, these data allow us to conclude that ApisOR5 is essential to EBF reception in A. pisum. The characterization of the EBF receptor allows high-throughput screening of aphid repellents, providing the necessary information to develop new strategies for aphid control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2016.10.013DOI Listing

Publication Analysis

Top Keywords

alarm pheromone
12
ebf
8
odorant receptors
8
odorant-binding proteins
8
ebf reception
8
molecular basis
4
basis alarm
4
pheromone detection
4
aphids
4
detection aphids
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!